Header Image - Gluten Light

Tag Archives

8 Articles

Glycemic index and grains

by luciano

Glycemic index is very important for diabetics in managing blood sugar, or even those who have been told they are at risk for developing diabetes. Wheat, given its high use for many consumer products,has been and is the subject of many researches and studies in relation to its glycemic index. The glycemic index of a product made with wheat is related to, among other things:
the composition of the sugars of its starch
the degree of refinement of the flour used
the method of preparing the dough

Composition of wheat starch sugars
Wheat starch is composed of two sugars amylose and amylopctin. Amylose is more prevalent in quantity than amylopectin and is rapidly hydrolyzed by digestive enzymes resulting, therefore, more responsible for the “glycemic peak”. T. monococcum wheat (einkorn) is an exception because the amylose content (23.3-28.6% of the total starch) (Hidalgo et al .. 2014) is lower than durum wheat (30% ) and soft wheat (35-43
Degree of refinement of the flour
Wholemeal flour has a lower glycemic index than refined flour.
A large study examining almost 43000 people for up to 12 years found that a diet high in whole grains was inversely associated with type 2 diabetes risk [3].
Epidemiological studies have consistently shown a beneficial effect of fiber, especially wheat fiber, in reducing the risk of diabetes (1–2) and cardiovascular disease (3,4), and a recent report indicated that total dietary fiber intake was associated with reduced CHD risk factors in young people (5). Fung TT, Hu FB, Pereira MA, et al. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. American Journal of Clinical Nutrition. 2002;76(3):535–540. [PubMed] [Google Scholar]

Dough: Sourdough fermentation, the glycemic index (GI) and the glycemic load (GL).
The glycemic index (GI) is the number from 0 to 100 assigned to a food (pure glucose has been arbitrarily given the value of 100) which is indicative of the relative rise in blood glucose levels found 2h after the food has been consumed. The GI of a specific food depends primarily on the quantity and type of carbohydrate it contains, but it is also affected by numerous other factors including the amount of organic acids.
The glycemic load (GL) is a value indicating how quickly a given food portion elevates blood glucose levels. It takes into account both the amount of carbohydrates in the serving and how quickly it raises blood glucose levels (GL = GI × carbohydrate/100). A GL of 0–10 = low GL; 11–19 = medium GL; 20 and over = high GL). Sourdough fermentation of wheat flour dough significantly lowers the GI of bread by reducing the rate of starch digestion, mostly through the formation of organic acids that delay the absorption of starch [6]. Starch is absorbed more slowly in the presence of lactic acid due to the inhibition of amylolytic enzymes, and its bioavailability is reduced due to the interaction between starch and gluten [7]. Acetic acid delays the gastric empting rate [8]. The Mediterranean way: why elderly people should eat wholewheat sourdough bread—a little known component of the Mediterranean diet and healthy food for elderly adults. Antonio Capurso, Cristiano Capurso. 13 november 2019 springer

References
1 – Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, Hennekens CH, Willett WC: A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health 90: 1409–1415, 2000 PubMedWeb of ScienceGoogle Scholar

2 – Salmeron J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, Stampfer MJ, Wing AL, Willett WC: Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20:545–550, 1997.  Abstract/FREE Full TextGoogle Scholar

3 – Liu S, Stampfer MJ, Hu FB, Giovannucci E, Rimm E, Manson JE, Hennekens CH, Willett WC: Whole-grain consumption and risk of coronary heart disease: results from the Nurses’ Health Study. Am J Clin Nutr 70:412–419, 1999. Abstract/FREE Full TextGoogle Scholar

4 – Wolk A, Manson JE, Stampfer MJ, Colditz GA, Hu FB, Speizer FE, Hennekens CH, Willett WC: Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. JAMA 281:1998–2004, 1999
CrossRefPubMedWeb of ScienceGoogle Scholar
5 – Ludwig DS, Pereira MA, Kroenke CH, Hilner JE, Van Horn L, Slattery ML, Jacobs DR Jr: Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA 282:1539–1546, 1999.  CrossRefPubMedWeb of ScienceGoogle Scholar
6 – Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699
7 – Liljeberg H, Björck I (1998) Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr 52:368–371
8 – Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31:2281–2283

Note
“The glycemic index [GI] a system that ranks foods on a scale from 1 to 100 based on their effect on blood-sugar levels.”
The purpose of this scale is so that sensitive individuals can judge the impact a particular food will have on their blood sugar, and either eat or avoid it accordingly. This is very important for diabetics in managing blood sugar, or even those who have been told they are at risk for developing diabetes.
Now, that rank is from 1 to 100, but that means nothing without context.
• High GI foods are ranked at 70 or greater — like potatoes
• Medium GI foods are ranked at 56 to 69 — like sweet potatoes and corn; sweeter fruits like pineapple and apricots; and millet
• Low GI foods are ranked at 55 or lower — like carrots and other moderately sweet vegetables, most other fruits, most nuts/seeds; beans; dairy; and most grains
• Very Low GI foods are ranked below any of these because they have no impact on blood sugar or no established GI value — like non-starchy vegetables; spices; herbs; and meats and seafood
By the way, this information comes from The World’s Healthiest Foods.
The high GI foods cause a sudden and extreme spike in blood sugar levels, while medium/low GI foods produce a more gradual increase.

Kewords: glycemic index, glycemic load, einkorn, monococcum wheat, Wholemeal flour

Comparative Analysis of in vitro Digestibility and Immunogenicity of Gliadin Proteins From Durum and Einkorn Wheat

by luciano

A very recent study that:
“show that the T. monococcum cultivars (hammurabi and Norberto ID331) own a different gliadin and glutenin types, and such differences may influence the digestibility and, consequently, the immunogenic properties of wheat proteins. Despite ancient monococcum grains have a similar gluten content or otherwise not higher with respect to modern tetraploid and hexaploid wheat, these genotypes possess a more digestible and thus potentially less toxic gluten, as also confirmed by their low gluten indexes and alveographic W value. Such characteristics could play an important role to find a better-tolerated alternative wheat species destined to patients affected by wheat-related disorders.”
Luigia Di Stasio; Stefania Picassa; Renata auricchio; Serena Vitale; Laura Gazza; Gianluca Picariello; Carmen Gianfrani; Gianfranco Mamone.
The complete study is available in:
Front. Nutr., 22 May 2020 | https://doi.org/10.3389/fnut.2020.00056
The study also gives an important impetus to develop bakery products using the tested monococcum wheat directly (and also the ID331 type monococcum wheat). This site contains various tests relating to products such as bread and dry products with monococcum wheat both Norberto-ID331 and monococcum type ID331.

Monococcum wheat (einkorn wheat): why it is so important

by luciano

Summary of the main characteristics of the monococcum wheat (einkorn) which give it great potential to be used for the preparation of bakery products but also sweet ones for people who:
1. are genetically predisposed for celiac disease (1) (2) (3) (4) (5),
2. must keep the glycemic index under control (6),
3. are non-celiac gluten sensitive, reintroduce gluten after its exclusion (7),
4. have difficulty digesting gluten (8).
5. are sensitive to ATI -amylase trypsina inhibitors-. (9)
6. Also worthy of note is the high nutritional qualities of monococcus wheat (einkorn) (10)
(1)- Immunogenicity of monococcum wheat in celiac patients
………..omissis. “Conclusions: Our data show that the monococcum lines Monlis and ID331 activate the CD T cell response and suggest that these lines are toxic for celiac patients. However, ID331 is likely to be less effective in inducing CD because of its inability to activate the innate immune pathways”. Immunogenicity of monococcum wheat in celiac patients. Carmen Gianfrani et altri. Am J Clin Nutr 2012;96:1339–45.

(2) ………omissis. “D’altra parte, tenuto conto che l’incidenza e la gravità della celiachia dipende dalla quantità e dalla nocività delle prolamine e che alcuni genotipi di grano monococco hanno una elevata qualità panificatoria accoppiata con assenza di citotossicità e ridotta immunogenicità, è atteso che l’uso delle farine di monococco nella dieta della popolazione generale, all’interno della quale si trova una elevata percentuale di individui predisposti geneticamente alla celiachia ma non ancora celiaci, possa contribuire a contenere la diffusione di questa forma di intolleranza alimentare. Ciò lascia pensare che il grano monococco, riportato recentemente in coltivazione in Italia dai ricercatori del Consiglio per la Ricerca e la sperimentazione in Agricoltura (CRA) di Roma e San Angelo Lodigiano, potrà svolgere un ruolo importante nella prevenzione della celiachia, sia direttamente sotto forma di pane e pasta sia indirettamente come specie modello per lo studio del ruolo dell’immunità innata nell’insorgenza della celiachia”. Le nuove frontiere delle tecnologie alimentari e la celiachia Norberto Pogna, Laura Gazza (2013).

(3)-Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: Implication for celiac disease
Carmen Gianfrani, Alessandra Camarca, Giuseppe Mazzarella, Luigia Di Stasio, Nicola Giardullo, Pasquale Ferranti, Gianluca Picariello, Vera Rotondi Aufiero, Stefania Picascia, Riccardo Troncone, Norberto Pogna, Salvatore Auricchio
and Gianfranco Mamone. Mol. Nutr. Food Res. 2015, 00, 1–11
Scope: The ancient diploid Triticum monococcum is of special interest as a candidate low-toxic wheat species for celiac disease patients. Here, we investigated how an in vitro gastro-intestinal digestion, affected the immune toxic properties of gliadin from diploid compared to hexaploid wheat.
Method and results: Gliadins from Triticum monococcum, and Triticum aestivum cultivars were digested using either a partial proteolysis with pepsin-chymotrypsin, or an extensive degradation that used gastrointestinal enzymes including the brush border membrane enzymes. The immune stimulatory properties of the digested samples were investigated on T-cell lines and jejunal biopsies from celiac disease patients. The T-cell response profile to the Triticum mono coccum gliadin was comparable to that obtained with Triticum aestivum gliadin after the partial pepsin-chymotrypsin digestion. In contrast, the extensive gastrointestinal hydrolysis drastically reduced the immune stimulatory properties of Triticum monococcum gliadin. MS-based analy- sis showed that several Triticum monococcum peptides, including known T-cell epitopes, were degraded during the gastrointestinal treatment, whereas many of Triticum aestivum gliadin survived the gastrointestinal digestion.
Conclusion: he pattern of Triticum monococcum gliadin proteins is sufficiently different from those of common hexaploid wheat to determine a lower toxicity in celiac disease patients following in vitro simulation of human digestion.

Potential Health Benefits of Einkorn-Based Breads

by luciano

The research we present can be considered the first integrated assessment of the potential benefits, linked to the excellent nutritional properties, of the use for bread and derivatives of Einkorn. The research emphasizes the use of whole wheat flour and sourdough is essential to obtain the best results in terms of exploiting the potential of this grain. The choice of this grain is well summarized in a passage of research: “Einkorn (Triticum monococcum L. ssp. monococcum) is an ancient crop. Compared to polyploid wheats it has a higher content of proteins, polyunsaturated fatty acids, fructans, and phytochemicals as tocols, carotenoids, alkylresorcinols, phytosterols, and a lower α-, β-amylase and lipoxygenase activities [15]. In addition, einkorn expresses very few T-cell stimulatory gluten peptides [16]. Einkorn could represent a valid alternative for producing functional baked products.

“Abstract: Nowadays the high nutritional value of whole grains is recognized, and there is an increasing interest in the ancient varieties for producing wholegrain food products with enhanced nutritional characteristics. Among ancient crops, einkorn could represent a valid alternative. In this work, einkorn flours were analyzed for their content in carotenoids and in free and bound phenolic acids, and compared to wheat flours. The most promising flours were used to produce conventional and sourdough fermented breads. Breads were in vitro digested, and characterized before and after digestion. The four breads having the best characteristics were selected, and the product of their digestion was used to evaluate their anti-inflammatory effect using Caco-2 cells. Our results confirm the higher carotenoid levels in einkorn than in modern wheats, and the effectiveness of sourdough fermentation in maintaining these levels, despite the longer exposure to atmospheric oxygen. Moreover, in cultured cells einkorn bread evidenced an anti-inflammatory effect, although masked by the effect of digestive fluid. This study represents the first integrated evaluation of the potential health benefit of einkorn-based bakery products compared to wheat-based ones, and contributes to our knowledge of ancient grains.

Monococcum wheat (einkorn) and wheat allergy

by luciano

The research reported in the summary highlighted the absence of ω-5 gliadin in the monococcum wheat responsible for wheat allergy: another important characteristic of the monococcum wheat!

Study on the Immunoreactivity of Triticum monococcum (Einkorn) Wheat in Patients with Wheat-Dependent Exercise-Induced Anaphylaxis for the Production of Hypoallergenic Foods. Carla Lombardo, Michela Bolla Roberto Chignola Gianenrico Senna Giacomo Rossin Beatrice Caruso, Carlo Tomelleri Daniela Cecconi Andrea Brandolini Gianni Zoccatelli. Cite This:J. Agric. Food Chem.201563378299-8306. Publication Date:September 2, 2015. https://doi.org/10.1021/acs.jafc.5b02648 Copyright © 2015 American Chemical Society Journal of Agricultural and Food Chemistry
Abstract
“Wheat [Triticum aestivum (T.a.)] ingestion can cause a specific allergic reaction, which is called wheat-dependent exercise-induced anaphylaxis (WDEIA). The major allergen involved is ω-5 gliadin, a gluten protein coded by genes located on the B genome. Our aim was to study the immunoreactivity of proteins in Triticum monococcum (einkorn, T.m.), a diploid ancestral wheat lacking B chromosomes, for possible use in the production of hypoallergenic foods. A total of 14 patients with a clear history of WDEIA and specific immunoglobulin E (IgE) to ω-5 gliadin were enrolled. Skin prick test (SPT) with a commercial wheat extract and an in-house T.a. gluten diagnostic solution tested positive for 43 and 100% of the cases, respectively. No reactivity in patients tested with solutions prepared from four T.m. accessions was observed. The immunoblotting of T.m. gluten proteins performed with the sera of patients showed different IgE-binding profiles with respect to T.a., confirming the absence of ω-5 gliadin. A general lower immunoreactivity of T.m. gluten proteins with scarce cross-reactivity to ω-5 gliadin epitopes was assessed by an enzyme-linked immunosorbent assay (ELISA). Given the absence of reactivity by SPT and the limited cross-reactivity with ω-5 gliadin, T.m. might represent a potential candidate in the production of hypoallergenic bakery products for patients sensitized to ω-5 gliadin. Further analyses need to be carried out regarding its safety”.