Header Image - Gluten Light
Gallery

Magazine

Permeabilità intestinale, microbiota, dieta ed esercizio fisico II parte

by luciano

Una ricerca recente e approfondita sull’influenza del microbiota intestinale, della dieta e dell’esercizio fisico sulla permeabilità intestinale. Tetiana R. Dmytriv et al. 2024. DOI 10.3389/fphys.2024.1380713.

6 Exercise as a regulator of intestinal barrier integrity

Regular moderate physical exercises are one of the most common recommendations for the prevention of various pathologies, including disruption of the integrity of the intestinal barrier. This may be due to the influence of the gut microbiota. In particular, exercises have been found to increase gut bacterial diversity (Hintikka et al., 2023). However, effects of physical exercises depend on their intensity. For example, endurance athletes have a high incidence of gastrointestinal disorders and the “leaky” gut is one of the most common disorders (Ribeiro et al., 2021). It is characterized by dysfunction of the intestinal epithelial barrier and its excessive permeability. This results in penetration of harmful microorganisms, toxins or undigested food particles into the bloodstream and has a negative effect on health of the whole organism (Aleman et al., 2023).
The effect of exercise on intestinal permeability depends on its duration and intensity. For example, people who exercise frequently and intensely have the same mortality rates as people who lead a sedentary lifestyle (Van Houten et al., 2015). A 60 min bout of intensive treadmill running increased the permeability of the small intestine in runners, whereas low-intensity running had no such effect (Pals et al., 1997). Using the overtraining model with male C57BL/6 mice, it was established that exhaustive exercise exacerbated intestinal inflammation, disrupted integrity and enhanced intestine wall permeability (Hou et al., 2020). Sustained strenuous exercise in racing sled dogs increased the intestinal permeability and the frequency of gastric erosions or ulcerations (Davis et al., 2005). High-intensity interval running increased intestine wall permeability and intestinal-fatty acid binding protein (I-FABP) release in male runners (Pugh et al., 2017). I-FABP is a cytoplasmic protein expressed exclusively in the enterocytes of the small intestine and its increased concentration in the blood is used as a marker of damage to intestinal epithelial cells (Sikora et al., 2019).
Physical exercise of low/moderate intensity can often have positive effects and can be considered as a method of non-pharmacological intervention in inflammatory bowel disease (Ordille and Phadtare, 2023). For example, mice that swam for 30 min before inducing intestinal barrier dysfunction had less intestinal dysfunction compared to mice that had not swum before. This might happen due to a strengthening of antimicrobial function of the intestine as a result of the increase in expression of antimicrobial peptides (Luo et al., 2014). Obese mice that were trained on a motorized treadmill for 45 min per day 5 days a week for 12 weeks had higher expression levels of colonic ZO-1 and occludin. Moderate exercise effectively prevented the development of dysbacteriosis caused by the HFD, as well as intestinal pathology (Wang et al., 2022). Dysbacteriosis and impaired intestinal barrier integrity induced by HFD in wild type mice was prevented by exercise. Exercise on a motor-driven rodent treadmill for 5 days a week for a total of 15 weeks significantly reversed the pathological changes. Ablation of Sestrin 2 protein attenuated the protective effects of exercise, suggesting its involvement in regulation of intestinal permeability (Yu et al., 2022). Thus, it can be concluded that high-intensity exercises often have a negative effect on the integrity of the intestine, whereas low- and moderate-intensity regular exercise can have a positive effects. It may be speculated that moderate damage to the intestinal wall is a hormetic factor that may be used to train organisms to cope with severe damaging challenges. This may be used to increase the adaptive potential of organisms to prevent damaging effects of any stresses of physical and chemical nature on the integrity of the intestinal wall.

 

6.1 Exercise-induced heat stress

It is known that physical exertion causes heat stress and associated dysfunction of gut integrity. A systematic review examining the relationship between an exercise-induced increase in core body temperature and intestinal permeability demonstrated that the magnitude of exercise-induced hyperthermia correlated with increased intestinal permeability (Pires et al., 2017). An increase in body temperature is a signal to activate the expression of heat shock proteins (HSP) which constitutively function as molecular chaperones maintaining the native structure of the proteins. Their expression is mainly triggered by heat shock signals. During exercise, the level of HSP70 and HSP90 increase (Krüger et al., 2019). Expression of HSP is regulated at the level of heat shock factors (HSF) such as HSF1 that is expressed in all mammalian tissues. Normally it resides in the cytoplasm as a monomer. In response to stressful conditions, it trimerizes, translocates into the nucleus, binds to the heat shock element of target genes and activates the transcription of HSPs, including HSP70/90 (Noble and Shen, 2012).
In this way, exercises cause a homeostatic imbalance, while regular training is adaptive and decreases the degree of this imbalance. Potentially, a higher adaptive steady-state level of HSPs due to regular training could explain their positive effect on gut integrity. At that time, during acute physical exertion, HSPs probably cannot cope with that level of homeostatic imbalance caused exercise-induced heat stress.

6.2 Exercise-induced hypoxia
It is well known, that exercise causes a redistribution of blood flow between tissues. This leads to the development of hypoxia (decreased oxygen levels) in intestinal epithelial cells and activation of hypoxia-inducible factor alpha (HIF-1α) (Wu et al., 2020). Figure 3 schematically shows the influence of exercise-induced hypoxia on intestinal permeability. In normoxia (normal oxygen levels), prolyl hydroxylase hydroxylates HIF-1α at two proline residues (Pro 402 and Pro 564). This results in ubiquitination followed by subsequent proteasomal degradation of HIF-1α (Lee et al., 2004).

…..omissis

7 Conclusion and perspectives
The intestinal wall is a kind of checkpoint between the external and internal environments of organisms. The wall consists of three layers: mucous, epithelial, and lamina propria. The mucous layer is inhabited by microorganisms, many of which mutually beneficially coexistence within the human body. These microorganisms modulate many if not most living processes: from the development of the immune and nervous systems at early stages of life to the induction of chronic inflammation causing neurodegeneration at aging. Despite the fact that these microorganisms have coexisted with humans for many years, under certain conditions the enteral immune system of the lamina propria can perceive them as foreign and trigger a pro- inflammatory response.
Normally, the intestinal mucosa is semipermeable. It allows selective absorption of nutrients into the bloodstream but prevents the entrance of potentially harmful microorganisms and their waste products from contact with the enteral immune system. An imbalance of the intestinal microbiota, called dysbiosis, can cause a disturbance of intestinal integrity and increase intestinal permeability. Conversely, a healthy composition of the gut microbiota can contribute to the integrity of the intestinal barrier due to increased expression and induction of the assembly of TJ proteins, activation of mucus synthesis, and antioxidant action.
Disruption of intestinal barrier function may trigger development of local and even systemic inflammation.
…..omissis
In general, a vicious cycle of intestinal barrier disruption can be traced here, as excessive intestinal wall permeability provokes the development of chronic low-grade inflammation. The latter is characterized by increased production of pro-inflammatory cytokines and enhanced ROS generation, increasing intestinal barrier dysfunction.
Nutrition looks to be the simplest non-pharmacological effector of integrity and permeability of the intestinal wall. It can have both a negative effect, such as HFD inducing metabolic endotoxemia, or a positive effect, such as a diet rich in plant polyphenols or fermented dairy products, increasing the expression of TJ proteins and promoting the development of beneficial bacteria.
Exercise also can affect gut intestinal permeability. Its effects depend on duration and intensity of exercise. Acute extensive physical exertion often increases intestinal permeability which may be related to the induction of heat stress, that organisms cannot cope with at that time due to insufficient resources. On the other hand, regular low and moderate intensity exercises, that are adaptive in nature, mostly have a positive effect on the integrity of the intestine and decrease its permeability. Potentially, this may be associated with an increase in the steady-state level of HSPs and chronic activation of HIF-1α which activates the transcription of genes responsible for strengthening the intestinal barrier function.
In general, it can be concluded that proper nutrition which promotes a healthy biodiversity of the gut microbiota, combined with moderate exercise, contribute to the integrity of the intestine. Disbalanced nutrition and excessive physical activity can provoke the development of dysbacteriosis and increase intestinal permeability which can potentially lead to a pro-inflammatory response. Figure 4 schematically shows potential consequences of acute intense exercises, unhealthy diet (e.g., high-fat diet), and dysbiosis on the intestinal barrier.
Taking into account all of the above, we can outline the following future prospects:
1. Development of healthy diets to support intestinal homeostasis;
2. Use of fermented dairy products as natural pre-, pro- and postbiotics to promote a healthy gut;
3. Selection of exercises to promote intestinal integrity by frequency, intensity and duration;
4. Study of the role of intestinal HIF-2α during exercise;
5. Systemic investigation of hypoxia-induced oxidative stress as a regulator of intestinal wall permeability.
Most of these perspective avenues are directed to enhance the capability of organisms to cope with disturbing factors. That increases an adaptive capability via preadaptation/hormetic mechanisms. However, some of them may be used “to patch holes” in “leaky” intestinal wall, which is characterized by increased specific permeability of the intestinal epithelium. Intestinal barrier permeability: the infuence of gut microbiota, nutrition, and exercise. Tetiana R. Dmytriv et al. DOI 10.3389/fphys.2024.1380713. PUBLISHED 08 July 2024

Note
[1] The term “intestinal barrier” emphasizes the barrier function of the intestinal wall which protects organism against invading by bacteria or other microorganisms and potentially toxic components of microorganisms. In fact, it is a complex selective physical barrier that separates the internal environment of the body from the contents of the intestinal lumen (Bischoff et al., 2014). Figure 1 shows a schematic structure of the intestinal barrier. It consists of several layers: i) a mucous layer including inner and outer mucous sublayers inhabited by commensal microorganisms in a different extent, ii) a single layer of epithelial cells, and iii) the lamina propria, which consists of immune cells that instantly react to the invasion of foreign substances (Schoultz and Keita, 2020).
The first layer, the mucous layer, that consists mainly of a mesh polymer called mucin, is located on the side of the intestinal lumen. It is associated with community of commensal microorganisms, including bacteria, fungi, viruses, and parasites, that form the individual microbial community (Chelakkot et al., 2018). A change in the microbial composition that causes a sharp imbalance between beneficial and potentially pathogenic bacteria, including changes in its functional composition, metabolic activity or changes in their local distribution, is called dysbiosis or dysbacteriosis. The latter usually results from loss of beneficial bacteria, overgrowth of potentially pathogenic bacteria, or loss of overall bacterial diversity. This disrupts the homeostatic balance of the intestinal microbiota and has a negative impact on the host’s health. In particular, dysbacteriosis is implicated in a wide range of diseases (DeGruttola et al., 2016).
The second layer, the intestinal epithelium, consists of a single layer of several specialized epithelial cells, such as enterocytes, Goblet cells, Paneth cells, enteroendocrine cells, and microfold cells (Figure 1). Enterocytes form the basis of the intestinal epithelium and play a main role in the absorption of all consumed nutrients. Goblet cells constitute about 10% of specialized epithelial cells. They secrete mucus to protect the intestinal wall from digestive enzymes (Kim and Ho, 2010). Paneth cells contain secretory granules filled with antimicrobial peptides, that are secreted in low amounts constitutively and provide the antimicrobial properties of the intestinal mucosa. Under certain conditions, their secretion can increase dramatically (Yokoi et al., 2019). Enteroendocrine cells produce hormones regulating secretion of digestive enzymes and insulin, peristalsis of the intestine, satiety, and immune response (Bonis et al., 2021). Microfold cells transport bacteria and antigens from the epithelium to enteric immune cells that either activate or suppress the immune response (Jung et al., 2010). All these cell types collectively contribute significantly to gut homeostasis.
The third layer, lamina propria, is located under the epithelium and forms the enteric immune system that consists of a large number of leukocytes with macrophages and dendritic cells being the dominant cell types (Shemtov et al., 2023). Resident intestinal macrophages are located in close proximity to the gut microbiota, with which they often interact. They play a key role in immune sampling of luminal bacteria, contributing to the maintenance of intestinal homeostasis and regulated immune response.

[2] TJ proteins are a complex of transmembrane and cytoplasmic proteins that form tight junctions, which seal cells together to create a selective barrier, maintain cell polarity, and regulate cell processes.

Key words
tight junction, tight junction proteins, inflammation,

Permeabilità intestinale, microbiota, dieta ed esercizio fisico I parte

by luciano

Una ricerca recente e approfondita sull’influenza del microbiota intestinale, della dieta e dell’esercizio fisico sulla permeabilità intestinale. Tetiana R. Dmytriv et al. 2024. DOI 10.3389/fphys.2024.1380713.

In Evidenza
1. La parete intestinale [1] è composta da tre strati: mucosa, epiteliale e lamina propria. Lo strato mucoso è abitato da microrganismi, molti dei quali coesistono reciprocamente beneficamente all’interno del corpo umano. Questi microrganismi modulano molti se non la maggior parte dei processi viventi: dallo sviluppo del sistema immunitario e nervoso nelle prime fasi della vita all’induzione dell’infiammazione cronica che causa neurodegenerazione nell’invecchiamento. Nonostante il fatto che questi microrganismi abbiano coesistito con gli esseri umani per molti anni, in determinate condizioni il sistema immunitario enterale della lamina propria può percepirli come estranei e innescare una risposta pro-infiammatoria.

2. Normalmente, la mucosa intestinale è semipermeabile. Consente l’assorbimento selettivo dei nutrienti nel flusso sanguigno, ma impedisce l’ingresso di microrganismi potenzialmente dannosi e dei loro prodotti di scarto dal contatto con il sistema immunitario enterale. Uno squilibrio del microbiota intestinale, chiamato disbiosi, può causare un disturbo dell’integrità intestinale e aumentare la permeabilità intestinale.

3. L’eccessiva permeabilità della parete intestinale provoca lo sviluppo di un’infiammazione cronica di basso grado.

4. La nutrizione sembra essere il più semplice agente non farmacologico di integrità e permeabilità della parete intestinale. Può avere sia un effetto negativo, come l’HFD che induce l’endotossemia metabolica, sia un effetto positivo, come una dieta ricca di polifenoli vegetali o prodotti lattiero-caseari fermentati, aumentando l’espressione delle proteine TJ [2] e promuovendo lo sviluppo di batteri benefici.

5. L’esercizio fisico può anche influenzare la permeabilità intestinale. I suoi effetti dipendono dalla durata e dall’intensità dell’esercizio. Lo sforzo fisico acuto esteso spesso aumenta la permeabilità intestinale che può essere correlata all’induzione dello stress da calore, che gli organismi non possono far fronte in quel momento a causa delle risorse insufficienti. D’altra parte, gli esercizi regolari di bassa e moderata intensità, che sono di natura adattiva, hanno per lo più un effetto positivo sull’integrità dell’intestino e ne riducono la permeabilità.

La ricerca
“La parete intestinale è una barriera selettivamente permeabile tra il contenuto del lume intestinale e l’ambiente interno del corpo. I disturbi della permeabilità della parete intestinale possono potenzialmente portare a un’attivazione indesiderata del sistema immunitario enterico a causa di un contatto eccessivo con il microbiota intestinale e i suoi componenti e lo sviluppo di endotossemia, quando il livello di lipopolisaccaridi batterici aumenta nel sangue, causando infiammazione cronica a bassa intensità. In questa revisione, vengono trattati i seguenti aspetti: la struttura della barriera della parete intestinale; l’influenza del microbiota intestinale sulla permeabilità della parete intestinale attraverso la regolazione del funzionamento delle proteine a giunzione stretta, la sintesi/degradazione del muco e degli effetti antiossidanti; i meccanismi molecolari di attivazione della risposta proinfiammatoria causata dall’invasione batterica attraverso le cascate di segnalazione TIRAP/MyD88 e TRAM/TRIF indotte da TLR4; l’influenza della nutrizione sulla permeabilità intestinale e l’influenza dell’esercizio fisico con un’enfasi sullo stress da calore indotti dall’esercizio e sull’ipossia. Nel complesso, questa revisione fornisce alcune informazioni su come prevenire l’eccessiva permeabilità della barriera intestinale e i processi infiammatori associati coinvolti in molte, se non nella maggior parte delle patologie. Alcune diete e l’esercizio fisico dovrebbero essere approcci non farmacologici per mantenere l’integrità della funzione di barriera intestinale e fornire il suo funzionamento efficiente. Tuttavia, in tenera età, l’aumento della permeabilità intestinale ha un effetto ormetico e contribuisce allo sviluppo del sistema immunitario.

Introduzione

La parete intestinale è un sistema complesso composto da quattro strati: mucosa, sottomucosa, muscolo e serosa. Il termine “barriere intestinale” enfatizza la componente protettiva della parete intestinale, mentre la permeabilità intestinale è una caratteristica misurabile dello stato funzionale della barriera intestinale (Bischoff et al., 2014). La parete fornisce un assorbimento selettivo di nutrienti e altri componenti del lume intestinale. Allo stesso tempo, la barriera intestinale protegge il corpo dall’ingresso di sostanze estranee indesiderate, particelle di cibo, microrganismi e loro componenti. Negli organismi normalmente funzionanti, la permeabilità della parete intestinale è strettamente controllata, ma il suo disturbo, se non adeguatamente fissato, può portare a molte, se non la maggior parte, patologie acquisite (Gieryńska et al., 2022).

Il tratto gastrointestinale (GIT) è abitato da diversi microbi chiamati microbiota intestinale che formano una comunità molto dinamica.

Figura 1 La struttura schematica della barriera intestinale. Per i dettagli vedi il testo.

L'”Ipotesi dei vecchi amici” suggerisce che le persone si sono evolute con molti microbi che, oltre a molte funzioni fisiologiche, stimolano anche lo sviluppo del sistema immunitario e ne regolano il funzionamento (Rook, 2023). Gli antigeni microbici sono sotto costante sorveglianza da parte del sistema immunitario enterico. Le cellule T immunitarie regolatorie sono responsabili del mantenimento della tolleranza immunitaria del microbiota intestinale omeostatico (Wu e Wu, 2012). Tuttavia, l’aumento della permeabilità intestinale può promuovere la traslocazione dei batteri luminali e dei modelli molecolari associati ai microbi, in particolare i lipopolisaccaridi (LPS) dall’intestino al flusso sanguigno, innescando lo sviluppo di endotossemia e infiammazione cronica a bassa intensità (Vanuytsel et al., 2021). L’endotossemia indotta dalla dieta è definita come endotossemia metabolica. Ad esempio, Cani et al. (2007) hanno stabilito che una dieta ricca di grassi ha aumentato cronicamente le concentrazioni plasmatiche di LPS da due a tre volte.

I lipopolisaccaridi endogeni LPS vengono costantemente rilasciati a causa della morte di batteri Gram-negativi nell’intestino. Con un aumento della permeabilità della barriera intestinale, gli LPS vengono assorbiti nel flusso sanguigno portale, da dove vengono trasportati dalle lipoproteine direttamente nel fegato, formando l’asse intestino-fegato. Inoltre, sono metabolizzati dagli enzimi epatici ed escreti con la bile. Tuttavia, se la loro degradazione o l’escrezione biliare sono compromesse, l’LPS può raggiungere la circolazione sistemica, dove si lega al recettore Toll-like 4 (TLR4) su leucociti, cellule endoteliali e piastrine, causando infiammazione arteriosa. In definitiva, questo porta all’attivazione della coagulazione del sangue e alla formazione di trombi, che dimostra che l’infiammazione indotta da LPS associata all’aumento della permeabilità della parete intestinale può essere coinvolta nello sviluppo dell’aterosclerosi e delle malattie trombotiche (Violi et al., 2023). In generale, la rottura della funzione di barriera intestinale è coinvolta in molte malattie correlate e non correlate al GIT, tra cui la malattia infiammatoria intestinale, la malattia epatica associata alla disfunzione metabolica, il malassorbimento degli acidi biliari, la celia, il diabete di tipo I, l’obesità, la schizofrenia e altre (Vanuytsel et al., 2021). Potenzialmente, questo potrebbe essere superato da un intervento non farmacologico basato su dieta ed esercizi (Pražnikar et al., 2020; Ordille e Phadtare, 2023) che promuovono un ecosistema intestinale sano e alleviano i sintomi di molte patologie.

In questa recensione, descriviamo la struttura della parete intestinale e i meccanismi molecolari della risposta pro-infiammatoria causata dall’invasione batterica a causa del disturbo della permeabilità della parete intestinale, nonché le influenze del microbiota intestinale, della dieta e degli esercizi sulla permeabilità della parete intestinale. Diete specifiche ed esercizi regolari a bassa e moderata intensità sono proposti come approcci non farmacologici efficaci per mantenere l’integrità della parete intestinale e il suo funzionamento efficiente. Tuttavia, in tenera età, la perdita controllata dell’intestino può essere necessaria per innescare lo sviluppo del sistema immunitario attraverso meccanismi ormetici.

2 La struttura della barriera intestinale

…….omissis

3 Permeabilità intestinale

La semipermeabilità o permeabilità selettiva è una caratteristica cruciale della parete intestinale. Limita la penetrazione degli agenti patogeni ma consente la permeabilità di nutrienti, acqua e ioni. I fattori endogeni (ad esempio, infiammazione) ed esogeni (ad esempio, componenti dietetici, sostanze tossiche o farmaci) possono aumentare la permeabilità intestinale e causare la formazione di un cosiddetto “intestino permeabile”. Quest’ultimo è caratterizzato dalla penetrazione di antigeni alimentari, commensali o batteri patogeni nel sangue, causando lo sviluppo di infiammazione (Vanuytsel et al., 2021). Alcune malattie possono anche agire come fattore dirompente della barriera intestinale. Ad esempio, diversi studi dimostrano che l’iperglicemia, una caratteristica chiave del diabete, induce la disfunzione della barriera intestinale (Thaiss et al., 2018; Dubois et al., 2023). L’esposizione prolungata al glucosio ad alti livelli aumenta la capacità di migrazione della linea cellulare del colon umano Caco-2, con il risultato che gli strati appaiono meno organizzati rispetto alle condizioni fisiologiche. In particolare, questo è associato a una diminuzione dell’espressione delle proteine della giunzione stretta (TJ), che contribuisce all’interruzione della rete strutturale ad esse associata e a un aumento della permeabilità della barriera intestinale (Dubois et al., 2023). A sua volta, questo contribuisce alla penetrazione dei batteri luminali e allo sviluppo della disbatteriosi con conseguente infiammazione. Ad esempio, Harbison et al. (2019) hanno dimostrato che i bambini con diabete di tipo I hanno disbiosi del microbiota intestinale associata ad un aumento della permeabilità intestinale. In particolare, sono stati osservati una minore diversità microbica, un numero inferiore di specie batteriche antinfiammatorie e batteri produttori di SCFA, e questi cambiamenti non sono stati spiegati dalle differenze nella dieta. Pertanto, alcune malattie, tra cui il diabete, possono anche svolgere il ruolo di disgregatori della barriera intestinale.

Mucus and epithelium are the most important components of the intestinal barrier that limit the development of inflammation. The mucous layer consists of two sublayers (Figure 1). The outerlayer is thick and loose. It is inhabited by a large number of commensal microorganisms that form colonies, and under healthy conditions pathogenic bacteria cannot outgrow them or penetrate further. In other words, homeostatic microorganisms efficiently compete with potentially pathogenic ones and prevent their excessive proliferation. The inner sublayer, on the contrary, is solid and contains only a few microbes (Usuda et al., 2021). The gut microbiota plays a major role in changing the composition of mucus, regulating its synthesis and degradation.
Epithelial cells are connected by TJ proteins (Lee et al., 2018) which regulate the absorption of water, ions, and dissolved substances. They include two functional categories of proteins: integral transmembrane proteins, located at the border of adjacent cell membranes, and adaptive peripheral membrane proteins that connect integral proteins with the actin cytoskeleton. The former includes occludin, claudins, junctional adhesion molecules, and tricellulin whereas the latter include zonula occludens-1 (ZO-1), ZO-2, and ZO-3 (Lee et al., 2018). The gut microbiota can influence the expression and localization of all of these TJ proteins.

3.1 Influence of the gut microbiota on tight junction proteins
TJ proteins regulate the rate of paracellular transport including the transport of consumed nutrients via the path between neighboring epithelial cells. In electron micrographs TJ proteins look like points of fusion of the membranes of neighboring cells where there is no intercellular space in these places (Gonzalez- Mariscal et al., 2003). They play the role of sensors of environmental conditions that dynamically regulate the paracellular transport of solutes (Ulluwishewa et al., 2011). Dysregulation of TJ proteins can lead to excessive permeability of the intestinal barrier.
Bacteria can change the expression and distribution of TJ proteins and thus affect intestinal permeability. For example, some pathogenic strains of Escherichia coli, including E. coli O157:H7 strain which causes bloody diarrhea, produce toxins such as Shiga toxins (STx). The latter suppress protein biosynthesis and contribute to the development of hemolytic uremic syndrome, which is a life-threatening complication. Pradhan et al. (2020) found that STx2a decreases the expression of TJ proteins such as ZO-2, occludin, and claudin-1 (Pradhan et al., 2020). However, this strain requires the presence of non-pathogenic E. coli, which enhances the expression of Stx2a. In this way, non- pathogenic E. coli decreases the expression of TJ proteins, increasing the production of the STx2a toxin by E. coli O157:H7 strain (Xiaoli et al., 2018). This indicates that, under certain conditions, even non- pathogenic microbiota can have a negative impact on intestinal wall permeability. Contrarily, the use of probiotics (living microorganisms that are beneficial to the host organism when administered in adequate amounts) may contribute to the integrity of the intestinal barrier (Ulluwishewa et al., 2011; Gou et al., 2022). In particular, Lactobacillus and Bifidobacterium species are the most commonly used probiotics. For example, Lactobacillus reuteri increases the expression of TJ proteins and thus supports the integrity of the intestinal wall (Gou et al., 2022). Oral administration of L. reuteri I5007 significantly increased the levels of claudin-1, occludin, and ZO-1 in newborn piglets. An in vitro study showed that pretreatment of intestinal porcine epithelial cell line J2 with this bacterial strain suppressed a LPS-induced decrease in TJ protein expression (Yang et al., 2015). Administration of L. plantarum into the duodenum of healthy people increased the level of ZO-1 and occludin. However, L. plantarum did not significantly affect expression of occludin in vitro human epithelial model but induced translocation of ZO-1 into the TJ region which forms a paracellular seal between epithelial cells (Karczewski et al., 2010; Caminero et al., 2023). Bifidobacterium infantis and L. acidophilus prevented dysregulation of occludin and claudin-1 levels in colon carcinoma cell line (Caco-2) stimulated by IL-1β treatment. These strains normalized their expression and contributed to the integrity of the intestinal barrier (Guo et al., 2017). For convenience, we have summarized some available information regarding the influence of different probiotic bacterial strains on TJ proteins in Table 1. In general, probiotic bacteria can both increase and decrease TJ proteins. However, in most cases, this does not cause excessive intestinal permeability, but on the contrary, normalizes it and contributes to its integrity.
Antibiotics used to treat bacterial infections may adversely affect the gut microbiota. They cause an imbalance between specific groups of bacteria and trigger the development of dysbacteriosis (Tulstrup et al., 2015). Dysbacteriosis, in turn, contributes to intestinal permeability. An increase in the population of pathogenic bacteria at dysbacteriosis which probably produce higher levels of LPS, can damage epithelial cells of the intestinal barrier and contribute to increased intestinal permeability. For example, it was shown that changes in the microbial composition correlated with an increase in intestinal permeability in alcohol- dependent subjects (Leclercq et al., 2014).
In addition, the gut microbiota is a significant source of digestive proteases used to break down host proteins for their own needs. However, excessive activity of microbial proteases can disrupt the epithelial components of the intestinal barrier due to cleavage of TJ proteins. In turn, changes in TJ proteins lead to an increase in the paracellular permeability of the epithelial barrier (Caminero et al., 2023).

3.2 The role of gut microbiota in biosynthesis and degradation of mucous layer components

…….omissis

3.3 Antioxidant effects of intestinal microorganisms

…….omissis

4 Molecular mechanisms of the activation of pro-inflammatory response caused by bacterial invasion

Dysbacteriosis of the gut microbiota can lead to disruption of intestinal barrier function and immune homeostasis. Increased intestinal permeability facilitates the translocation of microbes, their components, and microbial products into the blood stream and their recognition by the host immune cells (Longo et al., 2020). The gut microbiota is the main reservoir of pro-inflammatory endotoxins inside the body. In particular, LPS, the main component of the outer membrane of Gram-negative bacteria, can cause so-called endotoxemia. The latter develops when the level of LPS in the blood increases and this leads to the activation of a pro-inflammatory immune response triggering systemic low-grade inflammation (André et al., 2019). A diet-induced increase in LPS concentration in the blood is called metabolic endotoxemia. The level of LPS in the blood serum of mice that consumed high-fat diet (HFD) for 4 weeks is similar to its level in metabolic endotoxemia (Mohammad and Thiemermann, 2021). This clearly shows how nutrition can affect intestinal permeability and immune response.
The dynamic interaction between the gut microbiota and the intestinal immune system plays a key role in maintaining intestinal homeostasis. Host cells contain pattern recognition receptors (PRRs) which recognize bacterial pathogen-associated molecular patterns (PAMPs). The latter are highly conserved bacterial motifs, possessed in LPS, oligodeoxynucleotides, peptidoglycans, and others that can trigger host immune response (Asiamah et al., 2019).
…………omissis

4.1 Early/late activation of inflammation by TIRAP/MyD88 and TRAM/TRIF signaling cascades

……….omissis

Some dairy products, such as kefir, have long been studied as regulators of intestinal integrity. For example, consumption of kefir for 21 days by healthy people with two washout periods in-between decreased the serum level of zonulin (Novak et al., 2020) Kefir diet also normalized zonulin level in overweight people (Pražnikar et al., 2020). Zonulin is a protein that increases the permeability of the intestinal barrier and is often involved in the development of autoimmune diseases, including type I diabetes. Zonulin causes TJ disassembly and thus violates the intestinal barrier (Fasano, 2011). Therefore, zonulin is considered a serum marker of the integrity of the intestinal wall.
Polyphenolic compounds (secondary plant metabolites with a long list of beneficial properties for humans) are other food components that improve intestinal integrity. Flavonoids are among most abundant representatives of this group. They are found mostly in fruits, vegetables, grains, tea, and wine (Kasprzak-Drozd et al., 2021). For example, the flavonoid quercetin increased intestinal integrity, as studied in Caco-2 cells (Suzuki and Hara, 2009). This effect was associated with the assembly of ZO-2, occludin and claudin-1, as well as increased expression of claudin-4 and transepithelial electrical resistance. The electrical resistance of epithelial cells is a reliable indicator of the integrity and permeability of the cell monolayer and TJ (Srinivasan et al., 2015). The consumption of quercetin in food increased the mRNA levels of occludin and ZO-1 in pigs that was accompanied by a decrease in serum endotoxin (Zou et al., 2016), a marker of metabolic endotoxemia frequently associated with increased intestinal permeability. The flavonoid kaempferol may have similar effects. In a study on Caco-2 cells during the first 6 hours after kaempferol administration, transepithelial electrical resistance increased significantly and this correlated with the assembly of occludin and claudin-3 (Suzuki et al., 2011).
A meta-analysis performed to study the effects of oral administration of phenolic compounds on the integrity of the intestinal barrier in animals confirmed their beneficial effects. In particular, the improvement of intestinal wall integrity occurs due to the three main mechanisms: i) increased expression of TJ proteins, ii) decreased levels of pro-inflammatory molecules, and iii) increased intracellular antioxidant potential (Sandoval-Ramírez et al., 2021).

………….omissis

Thus, nutrition can affect the integrity of the intestine and this is often associated with various pathological conditions. The effect mainly occurs at the level of modulation of gut microbiota composition and regulation of TJ protein operation. In this regard, healthy nutrition can be considered as a promising way to attenuate various pathologies.

Risposta del sistema immunitario all’infiammazione di basso grado: relazione con le funzioni metaboliche

by luciano

(Immunology of chronic low-grade inflammation: relationship with metabolic function)
L’infiammazione fa parte della risposta immunitaria innata dell’organismo ed è un processo essenziale che non solo difende da batteri e patogeni nocivi, ma svolge anche un ruolo chiave nel mantenimento e nella riparazione dei tessuti. In condizioni patologiche, si verifica un’interazione bilaterale tra la regolazione immunitaria e il metabolismo aberrante, con conseguente infiammazione persistente in assenza di infezione. Questo fenomeno è definito infiammazione metabolica sterile (metainfiammazione) e si verifica se lo stimolo iniziale non viene rimosso o se il processo di risoluzione viene interrotto.

…..omissis

Questa infiammazione metabolica cronica di basso grado non deve essere trascurata poiché è significativamente associata alla mortalità per tutte le cause nella popolazione generale (Fest et al. 2019), ha un impatto negativo sulla sensibilità all’insulina (Blaszczak et al. 2020) e aumenta il rischio di sviluppo del cancro (Li et al. 2023).
Immunology of chronic low-grade inflammation: relationship with metabolic function. Mari van de Vyver. Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. Journal of Endocrinology (2023) 257, e220271

Note:
1 – Funzione metabolica:
La funzione metabolica si riferisce ai processi chimici continui all’interno delle cellule e degli organismi che convertono il cibo in energia utilizzabile, costruiscono e riparano i tessuti e sostengono la vita. Ciò include processi vitali come la respirazione, la circolazione sanguigna e il mantenimento cellulare, anche a riposo. Le due principali categorie di reazioni metaboliche sono l’anabolismo, che costruisce molecole più grandi e consuma energia, e il catabolismo, che scompone molecole più grandi per rilasciare energia, come la digestione del cibo.

2 – L’immunologia dell’infiammazione descrive la risposta del sistema immunitario ai danni tissutali o alle infezioni, un meccanismo di difesa innato e non specifico che serve a eliminare gli agenti nocivi e a promuovere la riparazione. La flogosi, o infiammazione, coinvolge cellule e molecole immunitarie che richiamano più sangue nel sito danneggiato, causando arrossamento, calore, gonfiore e dolore. Sebbene sia un processo protettivo, un’infiammazione eccessiva o cronica può diventare dannosa e contribuire a malattie autoimmuni o altre patologie.

Ricerca recente e approfondita sull’influenza del microbiota intestinale, della dieta e dell’esercizio fisico sulla permeabilità intestinale. II parte

by luciano

I parte: Ricerca recente e approfondita sull’influenza del microbiota intestinale, della dieta e dell’esercizio fisico sulla permeabilità intestinale. I parte

6 Esercizi come regolatore dell’integrità della barriera intestinale

Gli esercizi fisici moderati regolari sono una delle raccomandazioni più comuni per la prevenzione di varie patologie, tra cui l’interruzione dell’integrità della barriera intestinale. Ciò potrebbe essere dovuto all’influenza del microbiota intestinale. In particolare, è stato scoperto che gli esercizi aumentano la diversità batterica intestinale (Hintikka et al., 2023). Tuttavia, gli effetti degli esercizi fisici dipendono dalla loro intensità. Ad esempio, gli atleti di resistenza hanno un’alta incidenza di disturbi gastrointestinali e l’intestino “che perde” è uno dei disturbi più comuni (Ribeiro et al., 2021). È caratterizzato dalla disfunzione della barriera epiteliale intestinale e dalla sua eccessiva permeabilità. Ciò si traduce nella penetrazione di microrganismi dannosi, tossine o particelle alimentari non digerite nel flusso sanguigno e ha un effetto negativo sulla salute dell’intero organismo (Aleman et al., 2023).

L’effetto dell’esercizio sulla permeabilità intestinale dipende dalla sua durata e intensità. Ad esempio, le persone che si esercitano frequentemente e intensamente hanno gli stessi tassi di mortalità delle persone che conducono uno stile di vita sedentario (Van Houten et al., 2015). Un attacco di 60 minuti di corsa intensiva sul tapis roulant ha aumentato la permeabilità dell’intestino tenue nei corridori, mentre la corsa a bassa intensità non ha avuto tale effetto (Pals et al., 1997). Utilizzando il modello di superallenamento con topi maschi C57BL/6, è stato stabilito che l’esercizio esaustivo ha esacerbato l’infiammazione intestinale, interrotto l’integrità e migliorato la permeabilità della parete intestinale (Hou et al., 2020). L’esercizio fisico sostenuto nei cani da slitta da corsa ha aumentato la permeabilità intestinale e la frequenza delle erosioni o ulcerazioni gastriche (Davis et al., 2005). L’intervallo ad alta intensità ha aumentato la permeabilità della parete intestinale e il rilascio di proteine leganti gli acidi grassi intestinali (I-FABP) nei corridori maschi (Pugh et al., 2017). I-FABP è una proteina citoplasmatica espressa esclusivamente negli enterociti dell’intestino tenue e la sua aumentata concentrazione nel sangue viene utilizzata come marcatore del danno alle cellule epiteliali intestinali (Sikora et al., 2019).

L’esercizio fisico di intensità bassa/moderata può spesso avere effetti positivi e può essere considerato come un metodo di intervento non farmacologico nella malattia infiammatoria intestinale (Ordille e Phadtare, 2023). Ad esempio, i topi che nuotavano per 30 minuti prima di indurre la disfunzione della barriera intestinale avevano meno disfunzione intestinale rispetto ai topi che non avevano nuotato prima. Ciò potrebbe accadere a causa di un rafforzamento della funzione antimicrobica dell’intestino a seguito dell’aumento dell’espressione di peptidi antimicrobici (Luo et al., 2014). I topi obesi che sono stati addestrati su un tapis roulant motorizzato per 45 minuti al giorno 5 giorni alla settimana per 12 settimane avevano livelli di espressione più elevati di ZO-1 colonico e occludina. L’esercizio moderato ha efficacemente impedito lo sviluppo della disbatteriosi causata dall’HFD, così come la patologia intestinale (Wang et al., 2022). La disbatteriosi e la compromissione dell’integrità della barriera intestinale indotta dall’HFD nei topi di tipo selvaggio è stata prevenuta dall’esercizio. L’esercizio su un tapis roulant per roditori motorizzato per 5 giorni alla settimana per un totale di 15 settimane ha invertito significativamente i cambiamenti patologici. L’ablazione della proteina Sestrin 2 ha attenuato gli effetti protettivi dell’esercizio, suggerendo il suo coinvolgimento nella regolazione della permeabilità intestinale (Yu et al., 2022). Pertanto, si può concludere che gli esercizi ad alta intensità hanno spesso un effetto negativo sull’integrità dell’intestino, mentre l’esercizio regolare a bassa e moderata intensità può avere effetti positivi. Si può ipotizzare che un danno moderato alla parete intestinale sia un fattore ormetico che può essere utilizzato per addestrare gli organismi a far fronte a gravi sfide dannose. Questo può essere usato per aumentare il potenziale adattivo degli organismi per prevenire effetti dannosi di qualsiasi stress di natura fisica e chimica sull’integrità della parete intestinale.

6.1 Stress da calore indotto dall’esercizio

È noto che lo sforzo fisico causa stress da calore e disfunzione associata dell’integrità intestinale. Una revisione sistematica che esamina la relazione tra un aumento indotto dall’esercizio della temperatura corporea centrale e la permeabilità intestinale ha dimostrato che l’entità dell’ipertermia indotta dall’esercizio è correlata all’aumento della permeabilità intestinale (Pires et al., 2017). Un aumento della temperatura corporea è un segnale per attivare l’espressione delle proteine dello shock termico (HSP) che funzionano costitutivamente come chaperoni molecolari mantenendo la struttura nativa delle proteine. La loro espressione è innescata principalmente da segnali di shock termico. Durante l’esercizio, il livello di HSP70 e HSP90 aumenta (Krüger et al., 2019). L’espressione di HSP è regolata a livello di fattori di shock termico (HSF) come HSF1 che è espresso in tutti i tessuti dei mammiferi. Normalmente risiede nel citoplasma come monomero. In risposta a condizioni di stress, si trimerizza, si trasloca nel nucleo, si lega all’elemento shock termico dei geni bersaglio e attiva la trascrizione degli HSP, tra cui HSP70/90 (Noble e Shen, 2012).

In questo modo, gli esercizi causano uno squilibrio omeostatico, mentre l’allenamento regolare è adattivo e diminuisce il grado di questo squilibrio. Potenzialmente, un livello di stato stazionario adattivo più elevato di HSP dovuto all’allenamento regolare potrebbe spiegare il loro effetto positivo sull’integrità intestinale. A quel tempo, durante lo sforzo fisico acuto, gli HSP probabilmente non possono far fronte a quel livello di squilibrio omeostatico causato dallo stress da calore indotto dall’esercizio.

6.2 Ipossia indotta dall’esercizio fisico

È risaputo che l’esercizio fisico provoca una ridistribuzione del flusso sanguigno tra i tessuti. Ciò porta allo sviluppo dell’ipossia (diminuzione dei livelli di ossigeno) nelle cellule epiteliali intestinali e all’attivazione del fattore alfa inducibile dall’ipossia (HIF-1α) (Wu et al., 2020). La figura 3 mostra schematicamente l’influenza dell’ipossia indotta dall’esercizio sulla permeabilità intestinale. Nella normossia (livelli normali di ossigeno), la prolil idrossilasi idrossila HIF-1α a due residui di prolina (Pro 402 e Pro 564). Ciò si traduce in ubiquitinazione seguita da una successiva degradazione proteasomiale di HIF-1α (Lee et al., 2004).

…..omissis

7 Conclusione e prospettive

La parete intestinale è una sorta di punto di controllo tra gli ambienti esterni e interni degli organismi. La parete è composta da tre strati: mucoso, epiteliale e lamina propria. Lo strato mucoso è abitato da microrganismi, molti dei quali coesistono reciprocamente beneficamente all’interno del corpo umano. Questi microrganismi modulano molti se non la maggior parte dei processi viventi: dallo sviluppo del sistema immunitario e nervoso nelle prime fasi della vita all’induzione dell’infiammazione cronica che causa neurodegenerazione nell’invecchiamento. Nonostante il fatto che questi microrganismi abbiano coesistito con gli esseri umani per molti anni, in determinate condizioni il sistema immunitario enterale della lamina propria può percepirli come estranei e innescare una risposta pro-infiammatoria.

Normalmente, la mucosa intestinale è semipermeabile. Consente l’assorbimento selettivo dei nutrienti nel flusso sanguigno, ma impedisce l’ingresso di microrganismi potenzialmente dannosi e dei loro prodotti di scarto dal contatto con il sistema immunitario enterale. Uno squilibrio del microbiota intestinale, chiamato disbiosi, può causare un disturbo dell’integrità intestinale e aumentare la permeabilità intestinale. Al contrario, una composizione sana del microbiota intestinale può contribuire all’integrità della barriera intestinale a causa dell’aumento dell’espressione e dell’induzione dell’assemblaggio delle proteine TJ, dell’attivazione della sintesi del muco e dell’azione antiossidante.

L’interruzione della funzione di barriera intestinale può innescare lo sviluppo di un’infiammazione locale e persino sistemica.

…..omissis

In generale, qui si può tracciare un circolo vizioso di interruzione della barriera intestinale, poiché l’eccessiva permeabilità della parete intestinale provoca lo sviluppo di un’infiammazione cronica di basso grado. Quest’ultimo è caratterizzato da una maggiore produzione di citochine pro-infiammatorie e da una maggiore generazione di ROS, aumentando la disfunzione della barriera intestinale.

La nutrizione sembra essere il più semplice effettore non farmacologico di integrità e permeabilità della parete intestinale. Può avere sia un effetto negativo, come l’HFD che induce l’endotossemia metabolica, sia un effetto positivo, come una dieta ricca di polifenoli vegetali o latticini fermentati, aumentando l’espressione delle proteine TJ e promuovendo lo sviluppo di batteri benefici.

L’esercizio fisico può anche influenzare la permeabilità intestinale. I suoi effetti dipendono dalla durata e dall’intensità dell’esercizio. Lo sforzo fisico acuto esteso spesso aumenta la permeabilità intestinale che può essere correlata all’induzione dello stress da calore, che gli organismi non possono far fronte in quel momento a causa delle risorse insufficienti. D’altra parte, gli esercizi regolari di bassa e moderata intensità, che sono di natura adattiva, hanno per lo più un effetto positivo sull’integrità dell’intestino e ne riducono la permeabilità. Potenzialmente, questo può essere associato a un aumento del livello allo stato stazionario degli HSP e all’attivazione cronica di HIF-1α che attiva la trascrizione dei geni responsabili del rafforzamento della funzione della barriera intestinale.

In generale, si può concludere che una corretta alimentazione che promuove una sana biodiversità del microbiota intestinale, combinata con un esercizio moderato, contribuisce all’integrità dell’intestino. L’alimentazione squilibrata e l’eccessiva attività fisica possono provocare lo sviluppo della disbatteriosi e aumentare la permeabilità intestinale che può potenzialmente portare a una risposta pro-infiammatoria. La figura 4 mostra schematicamente le potenziali conseguenze di esercizi intensi acuti, dieta malsana (ad esempio, dieta ricca di grassi) e disbiosi della barriera intestinale.

Tenendo conto di tutto quanto sopra, possiamo delineare le seguenti prospettive future:

1. Sviluppo di diete sane per sostenere l’omeostasi intestinale;

2. Uso di prodotti lattiero-caseari fermentati come pre-, pro- e postbiotici naturali per promuovere un intestino sano;

3. Selezione di esercizi per promuovere l’integrità intestinale per frequenza, intensità e durata;

4. Studio del ruolo dell’HIF-2α intestinale durante l’esercizio;

5. Indagine sistemica sullo stress ossidativo indotto dall’ipossia come regolatore della permeabilità della parete intestinale.

La maggior parte di queste vie prospettiche sono dirette a migliorare la capacità degli organismi di far fronte a fattori inquietanti. Ciò aumenta una capacità di adattamento attraverso meccanismi di preadattamento/ormetici. Tuttavia, alcuni di essi possono essere utilizzati “per rattoppare i fori” nella parete intestinale “che perde”, che è caratterizzata da una maggiore permeabilità specifica dell’epitelio intestinale. Permeabilità della barriera intestinale: l’inferenza del microbiota intestinale, della nutrizione e dell’esercizio fisico. Tetiana R. Dmytriv et al. DOI 10.3389/fphys.2024.1380713. PUBBLICATO 08 luglio 2024

Note

[1] Il termine “barriera intestinale” enfatizza la funzione di barriera della parete intestinale che protegge l’organismo dall’invasione di batteri o altri microrganismi e componenti potenzialmente tossici di microrganismi. In effetti, è una complessa barriera fisica selettiva che separa l’ambiente interno del corpo dal contenuto del lume intestinale (Bischoff et al., 2014). La figura 1 mostra una struttura schematica della barriera intestinale. Consiste in diversi strati: i) uno strato mucoso che include sottostrati mucosi interni ed esterni abitati da microrganismi commensali in misura diversa, ii) un singolo strato di cellule epiteliali e iii) la lamina propria, che consiste in cellule immunitarie che reagiscono istantaneamente all’invasione di sostanze estranee (Schoultz e Keita, 2020).

Il primo strato, lo strato mucoso, costituito principalmente da un polimero a maglie chiamato mucina, si trova sul lato del lume intestinale. È associato alla comunità di microrganismi commensali, tra cui batteri, funghi, virus e parassiti, che formano la comunità microbica individuale (Chelakkot et al., 2018). Un cambiamento nella composizione microbica che causa un netto squilibrio tra batteri benefici e potenzialmente patogeni, compresi i cambiamenti nella loro composizione funzionale, nell’attività metabolica o nei cambiamenti nella loro distribuzione locale, è chiamato disbiosi o disbatteriosi. Quest’ultimo di solito deriva dalla perdita di batteri benefici, dalla crescita eccessiva di batteri potenzialmente patogeni o dalla perdita della diversità batterica complessiva. Questo interrompe l’equilibrio omeostatico del microbiota intestinale e ha un impatto negativo sulla salute dell’ospite. In particolare, la disbatteriosi è implicata in una vasta gamma di malattie (DeGruttola et al., 2016).

Il secondo strato, l’epitelio intestinale, è costituito da un singolo strato di diverse cellule epiteliali specializzate, come enterociti, cellule a calice, cellule di Paneth, cellule enteroendocrine e cellule micropiega (Figura 1). Gli enterociti formano la base dell’epitelio intestinale e svolgono un ruolo principale nell’assorbimento di tutti i nutrienti consumati. Le cellule a doppio gondo costituiscono circa il 10% delle cellule epiteliali specializzate. Secernono muco per proteggere la parete intestinale dagli enzimi digestivi (Kim e Ho, 2010). Le cellule di Paneth contengono granuli secretori pieni di peptidi antimicrobici, che vengono secreti costitutivamente in basse quantità e forniscono le proprietà antimicrobiche della mucosa intestinale. In determinate condizioni, la loro secrezione può aumentare notevolmente (Yokoi et al., 2019). Le cellule enteroendocrine producono ormoni che regolano la secrezione di enzimi digestivi e insulina, la peristalsi dell’intestino, la sazietà e la risposta immunitaria (Bonis et al., 2021). Le cellule micropiegate trasportano batteri e antigeni dall’epitelio alle cellule immunitarie enteriche che attivano o sopprimono la risposta immunitaria (Jung et al., 2010). Tutti questi tipi di cellule contribuiscono collettivamente in modo significativo all’omeostasi intestinale.

Il terzo strato, la lamina propria, si trova sotto l’epitelio e forma il sistema immunitario enterico che è costituito da un gran numero di leucociti con macrofagi e cellule dendritiche che sono i tipi di cellule dominanti (Shemtov et al., 2023). I macrofagi intestinali residenti si trovano in prossimità del microbiota intestinale, con il quale spesso interagiscono. Svolgono un ruolo chiave nel campionamento immunitario dei batteri luminali, contribuendo al mantenimento dell’omeostasi intestinale e alla risposta immunitaria regolata.

[2] Le proteine TJ sono un complesso di proteine transmembrana e citoplasmatiche che formano giunzioni strette, che sigillano le cellule insieme per creare una barriera selettiva, mantenere la polarità cellulare e regolare i processi cellulari.

Parole chiave

Giunzione stretta, proteine della giunzione stretta, infiammazione,

 

Idrocolloidi ed emulsionanti alimentari (II parte)

by luciano

Idrocolloidi ed emulsionanti alimentari (I parte)

D – Gli idrocolloidi sono polimeri idrofili a catena lunga utilizzati nei sistemi alimentari per addensare, gelificare e stabilizzare. Influenzano significativamente la retrogradazione, l’idrolisi dell’amido e la modulazione del microbiota intestinale, con effetti sia positivi che negativi. Questi effetti dipendono da fattori quali il tipo di idrocolloide, la concentrazione, le interazioni con l’amido e le condizioni ambientali come la temperatura e i metodi di lavorazione. Alcuni idrocolloidi inibiscono la retrogradazione dell’amido interrompendo la ricristallizzazione dell’amilosio, mentre altri la promuovono in determinate condizioni. Possono anche alterare l’idrolisi dell’amido modificando l’accessibilità degli enzimi ai granuli di amido, rallentando o accelerando la digestione. Inoltre, gli idrocolloidi agiscono come fibre fermentabili, favorendo la crescita di batteri intestinali benefici, che possono influenzare i processi metabolici. Nonostante i progressi significativi, la complessità di queste interazioni rimane incompleta, poiché gli effetti variano a seconda della composizione del microbiota individuale. Questa revisione esplora i meccanismi attraverso i quali gli idrocolloidi modulano i comportamenti dell’amido e il microbiota intestinale, sintetizzando la letteratura attuale e identificando le direzioni future della ricerca per colmare le lacune di conoscenza esistenti.
………Omissis. Nei sistemi alimentari, gli idrocolloidi influenzano la retrogradazione dell’amido, l’idrolisi dell’amido e la modulazione del microbiota intestinale, fattori essenziali sia per la qualità del cibo sia per la salute umana.
……….Omissis. Diversi idrocolloidi, tra cui gomma xantana, pectina, β-glucano e glucomannano di konjac, influenzano l’idrolisi dell’amido e ne riducono la digeribilità. I loro effetti dipendono dalla struttura molecolare, dalla fonte, dalla concentrazione, dalle interazioni con l’amido e dalle condizioni di lavorazione (Ma et al., 2024). Aumentando la viscosità delle matrici a base di amido, gli idrocolloidi creano una rete di gel resistente, rallentando la degradazione enzimatica dell’amido nel tratto gastrointestinale. Questa idrolisi ritardata si traduce in un rilascio controllato di glucosio e in una minore risposta glicemica postprandiale (Bae & Lee, 2018; Bellanco et al., 2024). Di conseguenza, gli idrocolloidi hanno il potenziale per migliorare il controllo glicemico e ridurre il rischio di disturbi metabolici come il diabete di tipo 2. Yassin et al. (2022) hanno riportato che l’incorporazione di gomma xantana, lambda-carragenina o buccia di psillio (1-5% p/p del peso della farina) nel pane bianco ha ridotto significativamente la potenza glicemica, con la buccia di psillio al 5% p/p che ha esercitato l’effetto più forte. Analogamente, Mæhre et al. (2021) hanno scoperto che il pane bianco fortificato con gomma di guar ha ridotto le risposte glicemiche postprandiali.
Gli idrocolloidi modulano anche il microbiota intestinale, offrendo diversi benefici per la salute. Alcuni idrocolloidi, come inulina e pectina, agiscono come prebiotici, promuovendo la crescita dei batteri intestinali benefici e influenzando la composizione e la diversità del microbiota (Bouillon et al., 2022; Gularte & Rosell, 2011). I loro effetti prebiotici dipendono dalle proprietà fisico-chimiche, con variazioni della struttura polimerica e della fonte che influenzano i risultati sulla salute intestinale (Ağagündüz et al., 2023). I benefici segnalati includono una migliore digestione, un potenziamento della funzione immunitaria e una riduzione dell’infiammazione, sebbene permangano incongruenze in letteratura riguardo all’entità e ai meccanismi di questi effetti (Zhang et al., 2023). Sono necessarie ulteriori ricerche per comprendere appieno sia i vantaggi che i potenziali limiti delle applicazioni degli idrocolloidi per la salute intestinale. Questa revisione fornisce un’analisi approfondita degli effetti degli idrocolloidi sulla retrogradazione dell’amido, sulla digeribilità e sul microbiota intestinale, affrontando sia i risultati positivi che quelli negativi e mira a informare sullo sviluppo di alimenti funzionali con migliori benefici per la salute. The multifunctional role of hydrocolloids in modulating retrogradation, starch hydrolysis, and the gut microbiota. Xikun Lu et al. Food Chemistry Volume 489, 15 October 2025, 144974.

Approfondimento
Gli idrocolloidi sono un gruppo eterogeneo di polimeri idrofili a catena lunga, principalmente polisaccaridi e alcune proteine, noti per le loro proprietà gelificanti, addensanti e stabilizzanti in vari settori, in particolare nella produzione alimentare (Cevoli et al., 2013). La loro capacità di disperdersi in acqua è attribuita a numerosi gruppi ossidrilici (–OH), che migliorano le interazioni in ambienti acquosi. Gli idrocolloidi sono classificati in base alle loro fonti, alle caratteristiche strutturali (lineari o ramificate), alle proprietà di carica (neutra, negativa o positiva) e ai ruoli funzionali come gelificazione, addensamento e adesione (Kraithong, Theppawong et al., 2023). Oltre alle applicazioni alimentari, sono ampiamente utilizzati in prodotti farmaceutici, cosmetici, rivestimenti e imballaggi, contribuendo a modifiche reologiche e strutturali (Pegg, 2012). Nei sistemi alimentari, gli idrocolloidi influenzano la retrogradazione dell’amido, l’idrolisi dell’amido e la modulazione del microbiota intestinale, fattori critici sia per la qualità degli alimenti che per la salute umana. L’amido retrogradato, o amido resistente di tipo 3 (RS3), si forma attraverso la riristallizzazione dell’amido gelatinizzato, creando una rete cristallina strutturata (Han et al., 2024). La formazione di RS3 è principalmente influenzata dal contenuto di amilosio, poiché l’amilosio si riorganizza più facilmente dell’amilopectina, e dal contenuto di acqua, con una ricristallizzazione ottimale tra il 20 e il 90% di umidità (Han et al., 2024). Anche lipidi e proteine influenzano la retrogradazione dell’amido, poiché i complessi lipidi-amilosio limitano la disponibilità di amilosio per la cristallizzazione, mentre le proteine influenzano la distribuzione dell’acqua e creano barriere fisiche che ostacolano la retrogradazione (Liu et al., 2024). Gli idrocolloidi modificano la formazione di RS3 alterando la struttura dell’amido e le interazioni con l’acqua. I galattomannani come la gomma di guar, la gomma di tara, la gomma di carrube e il glucomannano di konjac migliorano la retrogradazione a breve termine, in genere entro un giorno, aumentando la concentrazione di amilosio nella fase continua (Funami et al., 2005; Funami et al., 2008). Tuttavia, questi idrocolloidi possono anche ridurre la frazione gelificata dell’amilosio, diminuendone la lisciviazione durante la gelatinizzazione. Inoltre, possono inibire la retrogradazione a lungo termine prevenendo la cristallizzazione dell’amilosio e la sua co-cristallizzazione con l’amilopectina, migliorando al contempo la ritenzione idrica all’interno della matrice amidacea. Il controllo della mobilità e della distribuzione dell’acqua è fondamentale per mitigare la retrogradazione dell’amido. (Funami et al. 2005).
The multifunctional role of hydrocolloids in modulating retrogradation, starch hydrolysis, and the gut microbiota. Xikun Lu et al. Food Chemistry Volume 489, 15 October 2025, 144974.

E – La carragenina (CGN).
La carragenina (CGN) è un polisaccaride ad alto peso molecolare estratto da alghe rosse, composto da residui di D-galattosio legati con legami galattosio-galattosio β-1,4 e α-1,3, ampiamente utilizzato come additivo alimentare negli alimenti trasformati per le sue proprietà di addensante, gelificante, emulsionante e stabilizzante. Negli ultimi anni, con la diffusione della dieta occidentale (WD), il suo consumo è aumentato. Ciononostante, è in corso un dibattito sulla sua sicurezza. La CGN è ampiamente utilizzata come agente infiammatorio e adiuvante in vitro e in modelli sperimentali animali per lo studio dei processi immunitari o per valutare l’attività di farmaci antinfiammatori. La CGN può attivare le vie immunitarie innate dell’infiammazione, alterare la composizione del microbiota intestinale e lo spessore della barriera mucosa. Evidenze cliniche suggeriscono che la carragenina (CGN) sia coinvolta nella patogenesi e nella gestione clinica delle malattie infiammatorie intestinali (MICI); le diete di esclusione alimentare possono infatti rappresentare una terapia efficace per la remissione della malattia. Inoltre, la presenza di IgE specifiche per l’oligosaccaride α-Gal è stata associata a reazioni allergiche comunemente note come “sindrome α-Gal”. Questa revisione si propone di discutere il ruolo della carragenina nelle malattie infiammatorie intestinali e nelle reazioni allergiche alla luce delle attuali evidenze. Inoltre, poiché non sono disponibili dati definitivi sulla sicurezza e sugli effetti della CGN, suggeriamo di colmare alcune lacune e consigliamo di limitare l’esposizione umana alla CGN riducendo il consumo di alimenti ultra-processati. The Role of Carrageenan in Inflammatory Bowel Diseases and Allergic Reactions: Where Do We Stand? Barbara Borsani et al. Nutrients 2021, 13, 3402. https://doi.org/10.3390/nu13103402.

F- La gomma di xantano ha mostrato diversi effetti positivi sul metabolismo: viene fermentata dai batteri per produrre SCFA (Bourquin et al., 1996). Il consumo dell’additivo alimentare gomma di xantano ha influenzato il microbiota intestinale (Ostrowski et al., 2022).

G – Sebbene la gomma di xantano sia generalmente considerata sicura, alcuni individui potrebbero manifestare reazioni allergiche. Queste reazioni possono variare da lievi a gravi e i sintomi possono includere eruzioni cutanee, problemi digestivi o respiratori. Le persone con allergie note a grano, mais, soia o latticini potrebbero essere più suscettibili, poiché la gomma di xantano viene spesso prodotta da queste fonti.
Ecco un’analisi più dettagliata:
Cos’è la gomma di xantano?
La gomma di xantano è un polisaccaride prodotto dalla fermentazione del batterio Xanthomonas campestris. È un comune additivo alimentare utilizzato come addensante, stabilizzante ed emulsionante.
Potenziali reazioni allergiche:
Alcune persone possono manifestare reazioni allergiche alla gomma di xantano, sebbene sia generalmente considerata sicura. Queste reazioni sono dovute al fatto che il sistema immunitario identifica erroneamente la gomma di xantano come una sostanza nociva e produce anticorpi IgE, che innescano il rilascio di istamina.
Sintomi:
1. Le reazioni allergiche possono manifestarsi in vari modi, tra cui:
2. Reazioni cutanee come orticaria, eruzioni cutanee o prurito.
3. Disturbi gastrointestinali come gonfiore, gas o diarrea.
4. Sintomi respiratori come starnuti, naso che cola o difficoltà respiratorie.
5. Altri sintomi come mal di testa, prurito o lacrimazione oculare e mal di gola.
Chi è a rischio?
Gli individui con allergie note a grano, mais, soia o latticini potrebbero essere più inclini a reagire alla gomma di xantano, poiché viene spesso prodotta utilizzando questi ingredienti. Anche i neonati prematuri possono essere a rischio di complicazioni dovute alla gomma di xantano, in particolare negli addensanti del latte artificiale o del latte materno.
Test:
I test allergologici, inclusi i test ematici per le IgE, possono essere utilizzati per rilevare allergie alla gomma di xantano.