Header Image - Gluten Light

Daily Archives

2 Articles

Appato digerente

by luciano

In evidenza:
Bocca: inizio della digestione dei carboidrati mediante l’enzima ptialina (amilasi salivare).
Stomaco: digestione delle proteine nello stomaco mediante l’enzima pepsina.
Intestino tenue tratto duodeno: digestione delle proteine, dei carboidrati e dei lipidi mediante rispettivamente gli enzimi tripsina, amilasi e lipasi.
Intestino tenue tratto digiuno: assimilazione delle proteine, dei carboidrati, del sodio e dei cloruri
Intestino tenue tratto ileo: assimilazione della vitamina B12 e dei sali biliari.
Intestino crasso: produzione di vitamine ed energia tramite fermentazione delle fibre da parte dei microrganosmi della flora batterica, e assorbimento di vitamine e riassorbimento dell’acqua.

L’apparato digerente è costituito dalla bocca (cavita orale), stomaco collegato alla bocca tramite l’esofago), intestino tenue e intestino crasso.

Bocca
Nella bocca sono presenti numerosissime piccole ghiandole salivari che mantengono umida e lubrificata la superficie e permettono l’inizio della digestione dei carboidrati mediante un enzima detto ptialina (amilasi salivare).

Esofago e stomaco
In continuità con il tratto faringeo si trova l’esofago, organo muscolare cavo lungo circa 25 cm, che attraversa il diaframma per mezzo di un’apertura chiamata iatus diaframmatico e si collega allo stomaco. Lo stomaco ha una capacità di riempimento di circa 1500 ml e si può dividere in quattro regioni anatomiche:
Cardias (via d’accesso)
Fondo
Corpo
Piloro (via d’uscita)
Il bolo (il bolo è l’impasto di cibo masticato, impastato e imbevuto di saliva, che si forma in bocca prima della deglutizione), nello stomaco, stimola le ghiandole gastriche a produrre un secreto detto succo gastrico, costituto da acido cloridrico e dall’enzimia pepsina per la digestione delle proteine.
Esso trasforma il cibo in componenti più facilmente assorbibili e facilita l’eliminazione batterica. La mucosa gastrica, inoltre, secerne sia muco che va a formare uno strato protettivo nei confronti dell’azione corrosiva del secreto, sia il fattore intrinseco (5), essenziale per l’assorbimento della vitamina B12. Le contrazioni peristaltiche dello stomaco e dello sfintere pilorico favoriscono il successivo rimescolamento degli alimenti costituendo il chimo, che viene immesso nel duodeno.

Intestino
L’intestino tenue, è il segmento più lungo del tratto gastrointestinale, di cui rappresenta circa i due terzi. Ha una superficie di circa 7000cm2 e si divide in tre parti:
Il duodeno, nel quale confluisce il dotto biliare comune attraverso l’ampolla di Vater, che consente il passaggio sia delle secrezioni pancreatiche sia di quelle biliari
Il digiuno
L’ileo, che termina con la valvola ileo-cecale

Il duodeno, ricco di ghiandole a secrezione alcalina per contrastare l’acidità gastrica, riceve il chimo dallo stomaco. Nel duodeno confluiscono, per mezzo del dotto comune, il dotto pancreatico e biliare. Il secreto del pancreas contiene enzimi digestivi tra cui tripsina, amilasi e lipasi, che permettono rispettivamente la digestione delle proteine, dei carboidrati e dei lipidi.
La bile secreta dal fegato e contenuta nella colecisti, aiuta l’emulsione dei grassi digeriti rendendoli più assorbibili. Il contenuto intestinale prosegue attraverso il digiuno e l’ileo e, grazie alla sua ampia superficie interna, avviene l’assorbimento di tutti i nutrienti. In particolare, le vitamine e i sali minerali sono assorbiti inalterati senza essere digeriti, i grassi, le proteine, i carboidrati, il sodio e i cloruri vengono assimilati nel digiuno, mentre la vitamina B12 e i sali biliari nell’ileo.

L’intestino crasso ha inizio dalla porzione terminale dell’ileo e termina in corrispondenza dell’orifizio anale. È lungo circa 1,6 metri e si suddivide in tre porzioni:
Intestino cieco con l’appendice vermiforme
Colon (ascendente, trasverso, discendente, sigmoideo)
Retto
La circolazione sanguigna del tratto gastrointestinale è costituita dalle arterie, che hanno origine lungo l’intera estensione dell’aorta toracica e addominale e dalle vene che riportano il sangue dagli organi digerenti (sistema venoso portale) e milza. L’intero l’apparato digerente è innervato sia dalla componente simpatica sia da quella parasimpatica del sistema nervoso autonomo.

La peristalsi intestinale (1) spinge il materiale di scarto residuo, detto chilo, nell’ileo terminale e quindi lentamente nel segmento prossimale del colon, attraverso la valvola ileo-cecale.

Le funzioni principali del crasso sono:

Produzione e assorbimento di vitamine (2) e di alcune sostanze come sodio e cloro e la scissione di materiali altrimenti indigeribili, grazie alla flora batterica residente
Riassorbimento progressivo dell’acqua e formazione di feci consistenti
Accumulo di feci prima della defecazione (retto)
Il retto presenta una prima porzione pelvica dilatata (ampolla rettale) e una seconda porzione più ristretta (canale anale), che attraverso il pavimento pelvico sbocca all’esterno tramite l’orifizio anale nella regione del perineo posteriore.
Nell’intestino crasso (colon) la flora batterica presenta una grande varietà di batteri in grado di utilizzare proteine e peptidi del glutine come nutrienti: “Alimentary protein digestion followed by amino acid and peptide absorption in the small intestinal epithelium is considered an efficient process. Nevertheless, unabsorbed dietary proteins enter the human large intestine as a complex mixture of protein and peptides.53,63 The incomplete assimilation of some dietary proteins in the small intestine has been previously demonstrated, even with proteins that are known to be easily digested (e.g., egg protein).64,65 The high proline content of wheat gluten and related proteins renders these proteins resistant to complete digestion in the small intestine. As a result, many high molecular weight gluten oligopeptides arrive in the lower gastrointestinal tract.66 While gluten peptides pass through the large intestine, proteolytic bacteria could participate in the hydrolysis of these peptides. 81Gluten Metabolism in Humans.

Glutine e colon

by luciano

Gli enzimi digestivi gastro-intestinali riducono “spezzettano” il glutine in frammenti piccoli o/e singoli aminoacidi che vengono assorbiti nell’intestino tenue o piccolo intestino attraverso i villi intestinali. Ma solo i più piccoli potranno essere digeriti, gli altri, in individui sani, attraversano l’intestino crasso [1] dove, partre di essi, verranno fermentati dalla flora batterica e trasformati in nutrienti; altri verranno eliminati con le feci.
1 – La ricerca “Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease” ha evidenziato come alcuni di questi batteri riescano a degradare il glutine trasformandolo in nutrienti utili per l’intestino stesso.
Abstract. “Gluten, a common component in the human diet, is capable of triggering coeliac disease pathogenesis in genetically predisposed individuals. Although the function of human digestive proteases in gluten proteins is quite well known, the role of intestinal microbiota in the metabolism of proteins is frequently underestimated. The aim of this study was the isolation and characterisation of the human gut bacteria involved in the metabolism of gluten proteins. Twentytwo human faecal samples were cultured with gluten as the principal nitrogen source, and 144 strains belonging to 35 bacterial species that may be involved in gluten metabolism in the human gut were isolated. Interestingly, 94 strains were able to metabolise gluten, 61 strains showed an extracellular proteolytic activity against gluten proteins, and several strains showed a peptidasic activity towards the 33-mer peptide, an immunogenic peptide in patients with coeliac disease. Most of the strains were classified within the phyla Firmicutes and Actinobacteria, mainly from the genera Lactobacillus, Streptococcus, Staphylococcus, Clostridium and Bifidobacterium. In conclusion, the human intestine exhibits a large variety of bacteria capable of utilising gluten proteins and peptides as nutrients [2], [3]. These bacteria could have an important role in gluten metabolism and could offer promising new treatment modalities for coeliac disease.” Diversity of the cultivable human gut microbiome involved in gluten metabolism: isolation of microorganisms with potential interest for coeliac disease. Alberto Caminero et al. Final version published online 3 March 2014. DOI: 10.1111/1574-6941.12295

Note:
[1]- “Alimentary protein digestion followed by amino acid and peptide absorption in the small intestinal epithelium is considered an efficient process. Nevertheless, unabsorbed dietary proteins enter the human large intestine as a complex mixture of protein and peptides.53,63 The incomplete assimilation of some dietary proteins in the small intestine has been previously demonstrated, even with proteins that are known to be easily digested (e.g., egg protein).64,65 The high proline content of wheat gluten and related proteins renders these proteins resistant to complete digestion in the small intestine. As a result, many high molecular weight gluten oligopeptides arrive in the lower gastrointestinal tract.66 While gluten peptides pass through the large intestine, proteolytic bacteria could participate in the hydrolysis of these peptides. 81Gluten Metabolism in Humans. Alberto Caminero, … Javier Casqueiro, in Wheat and Rice in Disease Prevention and Health, 2014”
[2], [3] – “Considering the characteristics of gut microbiota such as the large diversity, the stability and resilience, and the symbiotic interaction with the host, we can define the host and the microorganisms inhabiting it as a “superorganism” [8,9] which performs immune and metabolic functions [1]. Gut bacteria are key regulators of digestion along the gastrointestinal tract; commensal bacteria play an important role in the extraction, synthesis, and absorption of many nutrients and metabolites, including bile acids, lipids, amino acids, vitamins, and short-chain fatty acids (SCFAs). Gut microbiota have a crucial immune function against pathogenic bacteria colonization inhibiting their growth, consuming available nutrients and/or producing bacteriocins. Gut microbiota also prevent bacteria invasion by maintaining the intestinal epithelium integrity [10]. Microorganisms prevent pathogenic colonization by many competition processes: nutrient metabolism, pH modification, antimicrobial peptide secretions, and effects on cell signaling pathways. Moreover, recent studies have identified a critical role for commensal bacteria and their products in regulating the development, homeostasis, and function of innate and adaptive immune cells [11]. It is paradoxical to note that the gut microbiota functions are highly preserved between individuals, whereas each individual’s gut microbiota are characterized by a specific combination of bacterial species due to inter-individual and intra-individual variations throughout human life. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Emanuele Rinninella et al. Published online 2019 Jan 10. doi: 10.3390/microorganisms7010014. PMCID: PMC6351938”