Header Image - Gluten Light

Monthly Archives

12 Articles

Microbiota umano e il metabolismo delle tossine

by luciano

Riassunto
Il microbiota intestinale umano è un ecosistema complesso di microrganismi che svolge un ruolo centrale nella digestione, nella funzione immunitaria, nella regolazione metabolica e nella gestione delle tossine di origine alimentare e ambientale. Attraverso la fermentazione di fibre alimentari e carboidrati non digeribili, i batteri intestinali producono acidi grassi a catena corta (SCFA), come butirrato, acetato e propionato, che rappresentano un importante punto di comunicazione metabolica tra microbiota e organismo umano. Questi metaboliti fungono da substrati energetici per le cellule intestinali, contribuiscono al mantenimento della barriera intestinale e modulano i processi infiammatori e il metabolismo sistemico.
Il microbiota intestinale è inoltre coinvolto nella biotrasformazione degli xenobiotici, inclusi farmaci, additivi e inquinanti ambientali, influenzandone biodisponibilità e potenziale tossicità. Allo stesso tempo, fattori come antibiotici, sostanze inquinanti, alcol e alimenti ultra-processati possono alterare l’equilibrio microbico, favorendo disbiosi, aumento della permeabilità intestinale, infiammazione cronica e disturbi metabolici.
Questo articolo analizza le interazioni bidirezionali tra microbiota e tossine, i diversi tipi di fermentazione batterica (saccarolitica e proteolitica) e il concetto di simbiosi energetica tra microrganismi intestinali e ospite umano, evidenziando il ruolo fondamentale della dieta — in particolare dell’apporto di fibre — nel mantenimento della salute intestinale e metabolica.
Parole chiave:
Microbiota intestinale; Acidi grassi a catena corta (SCFA); Fibre alimentari; Butirrato; Fermentazione intestinale; Salute metabolica; Infiammazione; Barriera intestinale; Disbiosi; Metabolismo delle tossine; Asse intestino–fegato; Simbiosi energetica
1) Microbiota umano: definizione e ruolo
Definizione:
L’insieme dei microrganismi (batteri, virus, funghi) che vivono su e dentro il corpo umano, soprattutto nell’intestino, e contribuiscono a funzioni metaboliche e immunitarie critiche. (Nature)
Funzioni principali:
Digestione e fermentazione delle fibre non digeribili → produzione di SCFA (es. butirrato). (MDPI)
Modulazione del metabolismo energetico e glucidico. (Nature)
Mantenimento di una barriera immunitaria e protezione da patogeni. (Nature)
Coinvolgimento negli assi intestino-fegato e intestino-cervello. (attidellaaccademialancisiana.it)

2) Interazioni tra microbiota e tossine
2A – Microbiota → tossine/metaboliti
Il microbiota:
Fermenta le fibre [1] producendo metaboliti (SCFA) benefici. (MDPI)
Metabolizza xenobiotici (tossine ambientali, farmaci, additivi) influenzando la loro forma e tossicità. (MDPI)
Contribuisce alla barriera intestinale, limitando l’assorbimento di sostanze dannose. (attidellaaccademialancisiana.it)
Ricerche recenti:
1. Fan & Pedersen (2020): collegano microbiota e metabolismo dei composti derivati da alimenti e tossine negli esseri umani. (Nature)
2. Tu et al. (2020): revisione su microbioma e tossicità ambientale* (concetto di gut microbiome toxicity). (MDPI)
2B – Tossine → microbiota
Alcuni agenti impattano negativamente il microbiota:
Antibiotici → disbiosi intestinale
Pesticidi/metalli pesanti → alterano la diversità microbica
Alcol e alimenti ultra-processati → effetti negativi emergenti
Esempi di evidenze:
Ambientali e alimentari possono alterare l’equilibrio microbico e aumentare l’infiammazione. (ScienceDirect)

2C – Effetti della disbiosi
Una disbiosi (squilibrio del microbiota) può portare a:
Infiammazione intestinale
Aumento della permeabilità intestinale (leaky gut)
Disturbi metabolici (obesità, insulino-resistenza)
Evidenze scientifiche recenti:
Rassegna su metabolismo e salute umana collegati al microbiota. (Nature)

3) Fattori che influenzano il microbiota
Fattore
Effetto
Dieta ricca di fibre
↑ diversità e produzione SCFA (MDPI)
Polifenoli (frutta/verdura, tè, vino, olio)
modulano positivamente comunità microbica
Antibiotici
↓ biodiversità, ↑ disbiosi
Alcol
può danneggiare mucosa e favorire permeabilità
Alimenti ultra-processati
correlati a disbiosi (meccanismi ancora in studio)
Ricerche chiave:
1. Charnock & Telle-Hansen (2020): effetti delle fibre sul microbiota e sulla salute metabolica. (MDPI)
2. PubMed review (2023–2024): fibre e modulazione microbiota con implicazioni cliniche nelle malattie metaboliche. (PubMed)

4) Eliminazione delle tossine: vie fisiologiche integrate
Sistema epatico
Fase I: modifica strutturale delle tossine (ossidazione)
Fase II: coniugazione → più solubile
Eliminazione tramite bile → intestino
Il microbiota può modificare questi metaboliti e influenzare la loro recircolazione.

Reni
Filtrano il sangue
Eliminano tossine idrosolubili con urina

Intestino + microbiota
Espulsione delle tossine nei bocciamenti
Barriera fisica e metabolica contro l’assorbimento di composti dannosi

Polmoni e pelle
Eliminazione di CO₂ e composti volatili
Ruolo minore nella detossificazione di molecole più complesse

5) Concetti chiave integrativi
SCFA e salute
I prodotti della fermentazione batterica delle fibre (es. butirrato) non solo forniscono energia alle cellule intestinali ma modulano infiammazione e metabolismo sistemici. (MDPI)
Microbiota e asse intestino-fegato
I metaboliti microbici influenzano il metabolismo epatico, con potenziali effetti sulla gestione di tossine e grassi. (Nature)
Dieta e malattie metaboliche
Cambiamenti nel microbiota correlati a bassi livelli di fibra sono associati a obesità e diabete di tipo 2. (PubMed)

Mini-riassunto
1. Il microbiota intestinale è un ecosistema di microrganismi che supporta digestione, immunità e metabolismo; la sua alterazione (disbiosi) è collegata a malattie metaboliche. (Nature)
2. Le fibre alimentari non digeribili vengono fermentate dai microbi intestinali in composti benefici (SCFA). (MDPI)
3. Microbiota e tossine si influenzano reciprocamente: il microbiota può degradare o trasformare composti estranei, mentre sostanze come antibiotici e inquinanti possono alterare la flora. (MDPI)
4. L’organismo elimina tossine tramite fegato, reni, intestino (coinvolgendo microbiota), polmoni e pelle.

Glutine e infiammazione intestinale

by luciano

Il glutine induce infiammazione intestinale non solo nei soggetti celiaci ma anche in quelli sani

L’infiammazione intestinale è una condizione del sistema gastro-intestinale che riguarda una platea di persone molto vasta e in continuo costante aumento. Questa condizione rappresenta per l’ndividuo non solo uno stato di malessere che incide sulla qualità della vita ma può -se sottovalutata o trascurata- favorire l’insorgere o l’aggravare malattie gravi.
Un ruolo importante ma ancora da esplorare a fondo lo riveste il glutine in quanto pro-infiammatorio.
Lo studio” The Role of Gluten in Gastrointestinal Disorders: A Review. Sabrina Cenni. Gastrointestinal Disorders: A Review. Nutrients 2023” fornisce un’utile panoramica della sua efficacia nella prevenzione e nella gestione di questi disturbi.

Il glutine è soltanto parzialmente digerito dagli enzimi intestinali e può generare peptidi che alterano la permeabilità intestinale

“Abstract: Gluten is only partially digested by intestinal enzymes and can generate peptides that can alter intestinal permeability, facilitating bacterial translocation, thus affecting the immune system. Few studies addressed the role of diet with gluten in the development of intestinal inflammation and in other gastrointestinal disorders. The aim of this narrative review was to analyse the role of gluten in several gastrointestinal diseases so as to give a useful overview of its effectiveness in the prevention and management of these disorders.”

“Introduction. Gluten is a protein mass made of a complex network of gliadins and glutenins, which are proteins rich in glutamines and prolines found in most grains, such as barley, wheat, and rye [1 ,2]. Due to its high-water binding capacity and its consequent malleability and elasticity, gluten induces the formation of viscoelastic membranes, thus determining the proper consistency of dough, which allows it to be processed in bread and other foods [ 3– 5]. The high content of glutamines and prolines in gliadins make them difficult to cleave, making them able to escape degradation from gastric, pancreatic, and intestinal proteolytic enzymes [3, 4]. Therefore, gluten is what remains after the removal of starch, water-soluble proteins, and albumins [1]. In Western countries, the gluten dietary intake is approximately 5 to 20 g per day [3 , 4]. In the last decades, the literature reports an increased number of reactions following a widespread exposure to gluten [ 6]. Gluten-related diseases affect up to 10% of the general population and can be classified as three different disorders: IgE-mediated wheat allergy, Celiac disease (CD), and non-celiac gluten sensitivity (NCGS) [2, 6]. However, there is increasing evidence that gluten can trigger an innate and adaptative immune response responsible for intestinal inflammation [7]. Notably, along with other dietary elements, gluten may contribute to the development of inflammatory intestinal disorders, such as inflammatory bowel disease (IBD), as well as functional gastrointestinal disorders (FGIDs) and concur in symptom exacerbation, although its exact role is still under investigation.”

“Gluten and intestinsl inflammation. Inflammation is the natural response of the innate immune system to external stimuli, such as microbial pathogens and injuries [8 ]. When the trigger persists and the immune cells are constantly activated, the inflammatory response may become chronic and self-sustainable [8]. The aetiology of inflammation is clear and easily detectable in some health conditions, while in others it can be difficult to identify [ 8]. The pathogenesis of inflammation is multifactorial. Nevertheless, genetic vulnerability, psychological stress, environmental factors, and some dietary patterns have been described as potentially implicated in the development of inflammatory phenotypes [ 8]. There are at least 50 different types of gliadin epitopes that can have an immunomodulatory and cytotoxic role or that can impact the gut permeating activities [ 8 ]; in fact, some of these can stimulate a pro-inflammatory innate immune response and others can activate specific T cells [8]. Gliadins immune cells’ activation is not only observed in celiac patients, as described by Lammers et al. [9, 10]. Indeed, their study concluded that gliadin induced an inflammatory response and, in particular, an important production of pro-inflammatory cytokines (IL-6, IL-13, and interferon-gamma) both in Celiac patients and in healthy controls, even if proinflammatory cytokine levels were higher in Celiac patients [9, 10]. Similarly, Harris et al. showed that incubated peripheral blood mononuclear cells (PMBC) obtained from healthy HLA-DQ2 positive individuals produced proinflammatory cytokines, such as IL-23, IL-1beta, and TNF-α, when exposed to gliadin peptides [ 8, 11]. These cytokines’ production was significantly higher in Celiac patients compared to healthy controls [8,11]. Accordingly, Cinova et al., in their case-control study, demonstrated that gliadin could stimulate a substantial TNF-α and IL-8 production by monocytes, principally in celiac patients, but also, to a lesser extent, in healthy control individuals [12]. Gliadin also has an important role in modifying intestinal permeability through the reorganization of actin filaments and the modified expression of junctional complex proteins [ 8,13 ]. As demonstrated by Drago et al. and Lammers et al., gliadin’s binding to the chemokine receptor CXCR3 determines a release of zonulin, an active protein, which compromises the integrity of the intestinal barrier through the rearrangements of actin filaments, ultimately leading to an altered intestinal permeability both in Celiac and non-Celiac patients [ 9, 10, 14 ]. In conclusion, Ziegler et al. and Junker et al. reported that amylase trypsin inhibitors, found in gluten-containing cereals, have the capacity to activate toll-like receptors, thus stimulating the release of inflammatory cytokines and inducing a T-cell immune response in both celiac and non-celiac patients [15,16].”

Einkorn wheat is the exception in relation to gluten-induced intestinal inflammation

Einkorn bread evidenced an anti-inflammatory effect. Integrated Evaluation of the Potential Health Benefits of Einkorn-Based Breads A. Gobetti et al. 2017.

Protective effects of ID331 Triticum monococcum. Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium. Giuseppe Iacomino et al. (PMID: 27374565 DOI: 10.1016/j.foodchem.2016.06.014 ).

Keywords: glutine, IBS, disordini gastro-intestinali, celiachia