Header Image - Gluten Light

Tag Archives

23 Articles

Reintrodution gluten after after some period on a gluten-free diet for NCGS (non celiac gluten sensivity)

by luciano

“Once the diagnosis of NCGS is reasonably reached, the management and follow-up of patients is completely obscure. A logical approach is to undertake a gluten-free dietary regimen for a limited period (e.g., six months), followed by the gradual reintroduction of gluten. During the gluten-free diet, the ingestion of prolamine peptide (gliadin)-derived from wheat, rye, barley, oats, bulgur, and hybrids of these cereal grains-should be avoided. Rice, corn, and potatoes have been the typical substitutes, but nowadays other different cereals and pseudocereals, such as amaranth, buckwheat, manioc, fonio, teff, millet, quinoa, and sorghum, can be used. After some period on a gluten-free diet, the reintroduction of gluten can start with cereals of low gluten content (e.g., oats). In addition, einkorn farro (Triticum monococcum) can be used, having no direct in vitro or ex vivo toxicity and low (7%) gluten content[41]”. (Non-celiac gluten sensitivity: Time for sifting the grain. Luca Elli, Leda Roncoroni, and Maria Teresa Bardella. Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved).

Einkorn bread100% (suitable for people sensitive to gluten / wheat not celiac)

by luciano

Scientific research has long highlighted, in addition to the great digestibility and richness of mineral contents, also the high tolerability of some varieties of enkir wheat (https://glutenlight.eu/en/2019/03/11/tolerability-of-the-monococcum-wheat/) For this reason we dedicate particular attention to this grain.

In summary some of the possible difficulties are:
1. The least amount of gluten
2. The lower strength of gluten
3. Damaged starch (1)
4. Amylase too weak (falling number greater than 350). (2)

 Furthermore, the creation of products for people who are sensitive to gluten / wheat but not celiac requires long maturation times for the dough so that the enzymatic processes also operate the transformations (hydrolysis) of starches and gluten (https://glutenlight.eu/en/2019/03/12/maturation-and-fermentation-of-a-mixture-of-water-flour-and-yeasts-and-or-lactic-bacteria/).

Long maturation times (over 24 hours) are not compatible with the stability of this type of dough at room temperature or above. Low temperature (4-6 degrees) a retarder prover (cold rooms for leavening control) must be used to slow the leavening and to help the maturation of the dough (or, for home preparations, the refrigerator). Once the maturation is over, it will then proceed rapidly to leavening/proofing. It must be used, because the product is designed for people sensitive to gluten / wheat but not celiac, the sourdough of the same grain we use or the most digestible and tolerable einkorn wheat. This sourdough will not give great contribution to leavening. Furthermore, the lack of gluten does not generate an abundant nor strong gluten network: we risk having a low and compact bread. You will have to introduce air into the dough during preparation.

 You will have to use a very limited percentage of fresh compressed Brewer’s yeast that has the function of starter and collaboration with the lactobacilli. The flour to be used should always be from organic cultivation: the use of nitrogen compounds increases both the percentage of gluten and strength and alters the glutenin gliadin ratio. (https://glutenlight.eu/en/2019/03/14/fertilizers-and-wheat/). These notes are part of a new industrial method for making dough for bread and dry products suitable with gluten-poor flours (limited percentage of gluten and limited “gluten strength”). They are the flours that, in current practice, are not used for the production of bread. A first step we do using a simplified version (direct method) of the a new industrial method  (1) that involves the construction of the pre-ferment followed by the final dough. Furthermore the method was adapted for a home preparation, so without the use – for example – a retarder prover with controlled temperature and humidity.

Times and temperatures have been defined for a semi-wholemeal einkorn flour, stone-ground. This clarification is necessary, because especially times and temperatures vary according to the flour (type and harvest) and its degree of refining (quantity of bran present). Further clarification: the method is for expert people.

Method – recipe

Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours

by luciano

In wheat there are multiple fractions able to activate the adverse response of the human immune system. Among these fractions the most active is that called 33-mer because it is the most resistant to human digestion and because it contains six copies of the three toxic epitopes and its intermolecular bonds are very strong. It is therefore important to know the quantity of this fraction in the grains. The study of which some parts are reported, examined 57 different types of wheat, ancient and modern, noting that the difference, in all soft wheat and spelt flour, of 33-mer is wide: from 90.9 to 602.6 μg / g made with flour. On the other hand, its presence in monococcum wheat and durum wheat was not detected. These results take on great importance because they allow grains to be chosen with limited or no presence of this important toxic fraction for products that are more suitable for non-celiac gluten sensitive people or those suffering from gluten disorders.

“All gluten protein fractions, namely the alcohol-soluble prolamins and the insoluble glutelins, contain CD-active epitopes3. The prolamin fraction is particularly rich in proline and glutamine and the numerous proline residues lead to a high resistance to complete proteolytic digestion by human gastric, pancreatic, and brushborder enzymes. Studies by Shan et al. (2002) showed that a large 33-mer peptide (LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF) from α2-gliadin (position in the amino acid sequence of α2-gliadin: 56–88) is resistant to cleavage by intestinal peptidases4,5. The 33-mer is widely called the most immunodominant gluten peptide4,6,7, because it contains three overlapping T-cell epitopes, namely PFPQPQLPY (DQ2.5-glia-α1a, one copy), PYPQPQLPY (DQ2.5-glia-α1b, two copies) and PQPQLPYPQ (DQ2.5-glia-α2, three copies)3, which result in the initiation of a strong immune response.

Potential Health Benefits of Einkorn-Based Breads

by luciano

The research we present can be considered the first integrated assessment of the potential benefits, linked to the excellent nutritional properties, of the use for bread and derivatives of Einkorn. The research emphasizes the use of whole wheat flour and sourdough is essential to obtain the best results in terms of exploiting the potential of this grain. The choice of this grain is well summarized in a passage of research: “Einkorn (Triticum monococcum L. ssp. monococcum) is an ancient crop. Compared to polyploid wheats it has a higher content of proteins, polyunsaturated fatty acids, fructans, and phytochemicals as tocols, carotenoids, alkylresorcinols, phytosterols, and a lower α-, β-amylase and lipoxygenase activities [15]. In addition, einkorn expresses very few T-cell stimulatory gluten peptides [16]. Einkorn could represent a valid alternative for producing functional baked products.

“Abstract: Nowadays the high nutritional value of whole grains is recognized, and there is an increasing interest in the ancient varieties for producing wholegrain food products with enhanced nutritional characteristics. Among ancient crops, einkorn could represent a valid alternative. In this work, einkorn flours were analyzed for their content in carotenoids and in free and bound phenolic acids, and compared to wheat flours. The most promising flours were used to produce conventional and sourdough fermented breads. Breads were in vitro digested, and characterized before and after digestion. The four breads having the best characteristics were selected, and the product of their digestion was used to evaluate their anti-inflammatory effect using Caco-2 cells. Our results confirm the higher carotenoid levels in einkorn than in modern wheats, and the effectiveness of sourdough fermentation in maintaining these levels, despite the longer exposure to atmospheric oxygen. Moreover, in cultured cells einkorn bread evidenced an anti-inflammatory effect, although masked by the effect of digestive fluid. This study represents the first integrated evaluation of the potential health benefit of einkorn-based bakery products compared to wheat-based ones, and contributes to our knowledge of ancient grains.

Einkorn Characterization for Bread and Cookie Production in Relation to Protein Subunit Composition

by luciano

The research showed, through tests to make bread and biscuits, the best varieties of monococcum wheat among the 24 examined: among these the varieties ID140, ID280 and Id361 were the best for both uses. The research also shows how, due to the rheological properties of the flours, the presence or absence of a very limited number of storage protein subunits is important, highlighting the importance of LMW

Einkorn Characterization for Bread and Cookie Production in Relation to Protein Subunit Composition M. Corbellini, S. Empilli, P. Vaccino, A. Brandolini, B. Borghi, M. Heun, and F. Salamini. Cereal Chem. 76(5):727–733
Abstract
“Twenty-four einkorns were evaluated for agronomic traits in Italy and in Germany in replicated plot trials. After dehulling and milling, the harvested kernels, flour protein content, sedimentation volume, falling number, carotenoid, and dry gluten content were determined. Farinograph profiles were obtained with a farinograph and baking and cookie quality were evaluated with standard microtests. Significant differences in yield potential were observed between the two locations, with a three-fold increase in Germany as compared with Italy. One of the einkorn lines (ID529) had farinograph stability and degree of softening indices better than those of the control bread wheat. All the samples analyzed for breadmaking aptitude showed some degree of stickiness, but it was possible to handle the dough during the different steps of breadmaking. On average, cookies produced with einkorn flour were larger in diameter and thinner than those produced with soft wheat flour. The composition in α, β and γ-gliadins and in high molecular weight glutenin subunits was similar in all the lines. In contrast, the pattern exhibited in low molecular weight glutenin subunits correlated strictly with baking quality. In particular, the lines with bands arbitrarily designated a and b showed a high breadmaking poten- tial, while the lines lacking these bands had an ample range of variability but, on average, a much lower baking potential. Our data point to a simple genetic control of the breadmaking aptitude and indicate einkorn not only as a promising source of specialty foods but also as an ideal species for genetic investigations on wheat quality”.

NOTE:
LMW-GS: Low Molecular Weight – Glutenin Subunit

(Table extracted from the research)

Electrophoretic characterization of reserve proteins: glutenins and gliadins. They represent, with the different respective bands, the genetic imprint that defines and identifies the variety. (Table extracted from the research)