Header Image - Gluten Light

Tag Archives

4 Articles

Nutritional quality of Gluten-fre diet

by luciano

“Background & aims: The only available treatment for celiac disease (CD) is lifelong adherence to gluten free (GF)-diet. However, GF-diet may lead to possible nutrient unbalance resulting in improper nutritional quality of diet. The aim of this study is to evaluate the nutritional quality of GF-diet. Methods: MEDLINE(®)/PubMed and Cochrane Library were electronically searched for articles published between 1990/01/01 and 2015/09/01.
Results: GF-diet was found to be poor in alimentary fiber due in particular to the necessary avoidance of several kinds of foods naturally rich in fiber (i.e. grain) and the low content of fiber of GF product that are usually made with starches and/or refined flours. Micronutrients are also found to be poor, in particular Vit. D, Vit. B12 and folate, in addition to some minerals such as iron, zinc, magnesium and calcium. Moreover, an inadequate macronutrient intake was reported related above all to the focus on the avoidance of gluten that often leaving back the importance of nutritional quality of the choice. In particular, it was found a higher content of both saturated and hydrogenated fatty acids and an increase in the glycemic index and glycemic load of the meal.” Gluten free diet and nutrient deficiencies: A review. Giorgia Vici May 2016 Clinical nutrition (Edinburgh, Scotland) 35(6) DOI: 10.1016/j.clnu.2016.05.002

Kywords: gluten-free, saturated fatty acids, hydrogenated fatty acids, glycemic index, glycemic load,

Glycemic index and grains

by luciano

Glycemic index is very important for diabetics in managing blood sugar, or even those who have been told they are at risk for developing diabetes. Wheat, given its high use for many consumer products,has been and is the subject of many researches and studies in relation to its glycemic index. The glycemic index of a product made with wheat is related to, among other things:
the composition of the sugars of its starch
the degree of refinement of the flour used
the method of preparing the dough

Composition of wheat starch sugars
Wheat starch is composed of two sugars amylose and amylopctin. Amylose is more prevalent in quantity than amylopectin and is rapidly hydrolyzed by digestive enzymes resulting, therefore, more responsible for the “glycemic peak”. T. monococcum wheat (einkorn) is an exception because the amylose content (23.3-28.6% of the total starch) (Hidalgo et al .. 2014) is lower than durum wheat (30% ) and soft wheat (35-43
Degree of refinement of the flour
Wholemeal flour has a lower glycemic index than refined flour.
A large study examining almost 43000 people for up to 12 years found that a diet high in whole grains was inversely associated with type 2 diabetes risk [3].
Epidemiological studies have consistently shown a beneficial effect of fiber, especially wheat fiber, in reducing the risk of diabetes (1–2) and cardiovascular disease (3,4), and a recent report indicated that total dietary fiber intake was associated with reduced CHD risk factors in young people (5). Fung TT, Hu FB, Pereira MA, et al. Whole-grain intake and the risk of type 2 diabetes: a prospective study in men. American Journal of Clinical Nutrition. 2002;76(3):535–540. [PubMed] [Google Scholar]

Dough: Sourdough fermentation, the glycemic index (GI) and the glycemic load (GL).
The glycemic index (GI) is the number from 0 to 100 assigned to a food (pure glucose has been arbitrarily given the value of 100) which is indicative of the relative rise in blood glucose levels found 2h after the food has been consumed. The GI of a specific food depends primarily on the quantity and type of carbohydrate it contains, but it is also affected by numerous other factors including the amount of organic acids.
The glycemic load (GL) is a value indicating how quickly a given food portion elevates blood glucose levels. It takes into account both the amount of carbohydrates in the serving and how quickly it raises blood glucose levels (GL = GI × carbohydrate/100). A GL of 0–10 = low GL; 11–19 = medium GL; 20 and over = high GL). Sourdough fermentation of wheat flour dough significantly lowers the GI of bread by reducing the rate of starch digestion, mostly through the formation of organic acids that delay the absorption of starch [6]. Starch is absorbed more slowly in the presence of lactic acid due to the inhibition of amylolytic enzymes, and its bioavailability is reduced due to the interaction between starch and gluten [7]. Acetic acid delays the gastric empting rate [8]. The Mediterranean way: why elderly people should eat wholewheat sourdough bread—a little known component of the Mediterranean diet and healthy food for elderly adults. Antonio Capurso, Cristiano Capurso. 13 november 2019 springer

References
1 – Liu S, Manson JE, Stampfer MJ, Hu FB, Giovannucci E, Colditz GA, Hennekens CH, Willett WC: A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. Am J Public Health 90: 1409–1415, 2000 PubMedWeb of ScienceGoogle Scholar

2 – Salmeron J, Ascherio A, Rimm EB, Colditz GA, Spiegelman D, Jenkins DJ, Stampfer MJ, Wing AL, Willett WC: Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 20:545–550, 1997.  Abstract/FREE Full TextGoogle Scholar

3 – Liu S, Stampfer MJ, Hu FB, Giovannucci E, Rimm E, Manson JE, Hennekens CH, Willett WC: Whole-grain consumption and risk of coronary heart disease: results from the Nurses’ Health Study. Am J Clin Nutr 70:412–419, 1999. Abstract/FREE Full TextGoogle Scholar

4 – Wolk A, Manson JE, Stampfer MJ, Colditz GA, Hu FB, Speizer FE, Hennekens CH, Willett WC: Long-term intake of dietary fiber and decreased risk of coronary heart disease among women. JAMA 281:1998–2004, 1999
CrossRefPubMedWeb of ScienceGoogle Scholar
5 – Ludwig DS, Pereira MA, Kroenke CH, Hilner JE, Van Horn L, Slattery ML, Jacobs DR Jr: Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA 282:1539–1546, 1999.  CrossRefPubMedWeb of ScienceGoogle Scholar
6 – Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26:693–699
7 – Liljeberg H, Björck I (1998) Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. Eur J Clin Nutr 52:368–371
8 – Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31:2281–2283

Note
“The glycemic index [GI] a system that ranks foods on a scale from 1 to 100 based on their effect on blood-sugar levels.”
The purpose of this scale is so that sensitive individuals can judge the impact a particular food will have on their blood sugar, and either eat or avoid it accordingly. This is very important for diabetics in managing blood sugar, or even those who have been told they are at risk for developing diabetes.
Now, that rank is from 1 to 100, but that means nothing without context.
• High GI foods are ranked at 70 or greater — like potatoes
• Medium GI foods are ranked at 56 to 69 — like sweet potatoes and corn; sweeter fruits like pineapple and apricots; and millet
• Low GI foods are ranked at 55 or lower — like carrots and other moderately sweet vegetables, most other fruits, most nuts/seeds; beans; dairy; and most grains
• Very Low GI foods are ranked below any of these because they have no impact on blood sugar or no established GI value — like non-starchy vegetables; spices; herbs; and meats and seafood
By the way, this information comes from The World’s Healthiest Foods.
The high GI foods cause a sudden and extreme spike in blood sugar levels, while medium/low GI foods produce a more gradual increase.

Kewords: glycemic index, glycemic load, einkorn, monococcum wheat, Wholemeal flour

Monococcum wheat (einkorn wheat): why it is so important

by luciano

Summary of the main characteristics of the monococcum wheat (einkorn) which give it great potential to be used for the preparation of bakery products but also sweet ones for people who:
1. are genetically predisposed for celiac disease (1) (2) (3) (4) (5),
2. must keep the glycemic index under control (6),
3. are non-celiac gluten sensitive, reintroduce gluten after its exclusion (7),
4. have difficulty digesting gluten (8).
5. are sensitive to ATI -amylase trypsina inhibitors-. (9)
6. Also worthy of note is the high nutritional qualities of monococcus wheat (einkorn) (10)
(1)- Immunogenicity of monococcum wheat in celiac patients
………..omissis. “Conclusions: Our data show that the monococcum lines Monlis and ID331 activate the CD T cell response and suggest that these lines are toxic for celiac patients. However, ID331 is likely to be less effective in inducing CD because of its inability to activate the innate immune pathways”. Immunogenicity of monococcum wheat in celiac patients. Carmen Gianfrani et altri. Am J Clin Nutr 2012;96:1339–45.

(2) ………omissis. “D’altra parte, tenuto conto che l’incidenza e la gravità della celiachia dipende dalla quantità e dalla nocività delle prolamine e che alcuni genotipi di grano monococco hanno una elevata qualità panificatoria accoppiata con assenza di citotossicità e ridotta immunogenicità, è atteso che l’uso delle farine di monococco nella dieta della popolazione generale, all’interno della quale si trova una elevata percentuale di individui predisposti geneticamente alla celiachia ma non ancora celiaci, possa contribuire a contenere la diffusione di questa forma di intolleranza alimentare. Ciò lascia pensare che il grano monococco, riportato recentemente in coltivazione in Italia dai ricercatori del Consiglio per la Ricerca e la sperimentazione in Agricoltura (CRA) di Roma e San Angelo Lodigiano, potrà svolgere un ruolo importante nella prevenzione della celiachia, sia direttamente sotto forma di pane e pasta sia indirettamente come specie modello per lo studio del ruolo dell’immunità innata nell’insorgenza della celiachia”. Le nuove frontiere delle tecnologie alimentari e la celiachia Norberto Pogna, Laura Gazza (2013).

(3)-Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: Implication for celiac disease
Carmen Gianfrani, Alessandra Camarca, Giuseppe Mazzarella, Luigia Di Stasio, Nicola Giardullo, Pasquale Ferranti, Gianluca Picariello, Vera Rotondi Aufiero, Stefania Picascia, Riccardo Troncone, Norberto Pogna, Salvatore Auricchio
and Gianfranco Mamone. Mol. Nutr. Food Res. 2015, 00, 1–11
Scope: The ancient diploid Triticum monococcum is of special interest as a candidate low-toxic wheat species for celiac disease patients. Here, we investigated how an in vitro gastro-intestinal digestion, affected the immune toxic properties of gliadin from diploid compared to hexaploid wheat.
Method and results: Gliadins from Triticum monococcum, and Triticum aestivum cultivars were digested using either a partial proteolysis with pepsin-chymotrypsin, or an extensive degradation that used gastrointestinal enzymes including the brush border membrane enzymes. The immune stimulatory properties of the digested samples were investigated on T-cell lines and jejunal biopsies from celiac disease patients. The T-cell response profile to the Triticum mono coccum gliadin was comparable to that obtained with Triticum aestivum gliadin after the partial pepsin-chymotrypsin digestion. In contrast, the extensive gastrointestinal hydrolysis drastically reduced the immune stimulatory properties of Triticum monococcum gliadin. MS-based analy- sis showed that several Triticum monococcum peptides, including known T-cell epitopes, were degraded during the gastrointestinal treatment, whereas many of Triticum aestivum gliadin survived the gastrointestinal digestion.
Conclusion: he pattern of Triticum monococcum gliadin proteins is sufficiently different from those of common hexaploid wheat to determine a lower toxicity in celiac disease patients following in vitro simulation of human digestion.

High glycemic index of gluten-free products

by luciano

“In formulating Gluten Free products, therefore, the first problem to be solved is the absence of the protein network on which to build the product. This deficiency affects the structure of the product both in terms of volume and organoleptic level. The formulations are based mainly on mixtures of starches and substances that act as “glue” and often have a strong nutritional imbalance, ie a strong fiber deficiency and a high glycemic index. The Glycemic Index clarifies how quickly the ingested carbohydrate is demolished, absorbed and released into the bloodstream as an energy source for the cells. Foods with low Glycemic Index release energy in a prolonged way, constantly and allow to avoid the feeling of hunger a few hours after a meal. Foods with high Glycemic Index release energy in the form of glucose very quickly with the result that the feeling of hunger is not slow to be felt and the excess glucose is transformed into fat storage. In the report “Glycemic Index and Gluten Free Products” by Dr. Alessandra Bosetti, clinical dietician at the Sacco hospital, the need to reconsider the characteristics of the dieto-therapeutic products to improve their glycemic index and nutritional adequacy emerge . In the various baked products there is also a series of organoleptic defects summarized here:

• Biscuits: lack of bite consistency, too hard structure or excess of sand, lack of taste persistence;
• Baked cakes: no volume, they dry quickly, gumminess, lack of taste, unbalanced nutritional profile;
• Bread, pizza: it lacks volume, it lacks elasticity in the crumb, poorly homogeneous crumb, gumminess, unbalanced nutritional profile.

In the different formulations corn flours, rice, quinoa, buckwheat are used, to which are added amides with structuring or emulsifying function and hydrocolloids. The latter have the important function of absorbing and retaining the water of the mixture and during cooking to create a gelatinized starch containment mesh. The main hydrocolloids used include guar gum, xanthan, carrageenan and hydroxymethylcellulose. To make the best use of these products, it is advisable to use hot water or long resting times that allow optimal hydration of the fibers. Still little has been studied on kneading machines: the spiral kneader the fork or the diving arms are the least suitable when there is no gluten to be formed or oriented. Normally planetary mixers are used to have the best hydration of the different components; moreover, if they allow an optimal oxidation of the dough, the mesh formed by rubbers and starches shows a better resistance and functionality. ” From: https://www.sigmasrl.com/it/blog/im purchased-del-gluten-free