Header Image - Gluten Light

Tag Archives

9 Articles

Pasta madre e prodotti per persone geneticamente predisposte per la celiachia

by luciano

I batteri lattici presenti nella madre hanno dimostrato di avere notevoli capacità di idrolizzate le proteine del glutine; alcune selezioni di batteri lattici utilizzati con specifiche temperature, tempi e concentrazioni possono anche idrolizzare i peptidi più resistenti alla digestione gastro-intestinale. I prodotti da forno realizzati con pasta acida possono, pertanto, essere considerati una ottima opportunità e una valida scelta per le persone geneticamente predisposte per la celiachia.

Estratto dallo studio “Gluten-Free Products for Celiac Susceptible People”:

A – “ omissis…… The 33-mer peptide from α2-gliadin (amino acid sequence positions 56–88, LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF) contains three overlapping T-cell epitopes (3 × PQPQLPYPQ, 2 × PYPQPQLPY and PFPQPQLPY) for CD sensitive individuals. The human gastrointestinal enzymes pepsin, trypsin, and chymotrypsin were unable to hydrolyze the 33-mer peptide due to their inability to cleave before or after proline or glutamine, leaving the epitopes intact. Comparatively, large CD immunogenic peptides (≥9 amino acid residues) reach the small intestine (11) after crossing through the epithelial barrier and initiate immunogenic cascade in the laminapropria.

B – “omissis …Wheat flours modified to eliminate or reduce the immune toxicity of gluten have been used to prepare pasta and baked products. The large peptides of gluten need to be modified/converted into peptides of <9 amino acid residues to minimize the CD-induced immunoreactivity. This has been achieved through numerous approaches, including exogenous enzyme treatment, use of sourdough/lactic acid bacteria, use of genetically modified wheat, etc.”

C – “ omissis…The sourdough was prepared by fermenting flour with naturally occurring lactic acid bacteria (LAB) and yeasts. In the mature sourdoughs, the lactic acid bacteria were higher in number (> 10cfu/g) than the number of yeasts. Type I sourdough has a final pH of 4.0 at room temperature (20–30C) and is manufactured by continuous daily refreshments with the aim to maintain the microorganisms in an active state. It takes 2–5 (>30C) days of fermentation for developing type II sourdough as an acidifier with a pH that is <3.5 after 24 h of fermentation (131). The microorganisms were used in the late stationary phase of growth and exhibited restricted metabolic activity. The type III sourdough, as an acidifier supplement and aroma carrier in bread making, is a dried powder used for fermentation by certain starter cultures. A few reports are available about the use of sourdough for the preparation of gluten-free bread (84, 85). In one study it was reported that food processing by selected sourdough lactobacilli and fungal proteases may be considered an efficient approach for eliminating gluten toxicity, reducing the gluten level below 12 ppm (119). Further, sourdough fermentation, usually with a mixture of lactic acid bacteria (LAB) and yeasts, is traditionally used to produce leavened bread, especially from rye flour. Lactobacillus sp. are predominant among lactic acid bacteria (LAB) and they produce numerous mixed proteolytic enzymes, including metalloendopeptidases, such as PepO and PepF; aminopeptidases, such as PepN and PepC; dipeptidases, such as PepD; and dipeptidyl and tripeptidylpeptidases, such as the proline-specific Xaa-Pro dipeptidyl-peptidase (PepX) (132). The combination of wheat germination and sourdough fermentation with Lactobacillus brevis L62 extensively hydrolyzed wheat prolamin down to <5% of the initial content (133). A cell-free extract of two LABs, L. plantarum and Pediococcus pentosaceus, had a higher gliadin-degrading capacity (83%) in doughs than the corresponding cell suspension (70%), and complete gliadin degradation without using live LAB may be optimized (134). High molecular weight polymers, namely exopolysaccharides, are produced by lactic acid bacteria in presence of sucrose that mimics physiochemical properties of commercial hydrocolloids or gums, such as the ability to form a network and bind water. It counteracts the negative effects of excessive sourdough acidification and enhances loaf volume, shelf-life, the staling rate, and textural properties of products (129).”

Approfondimento
Gluten-Free Products for Celiac Susceptible People. Sweta Rai, Amarjeet Kaur and C. S. Chopra. Front. Nutriens 17 december 2018.

Il Glutine e le frazioni “tossiche” (I parte)

by luciano

-la struttura della gliadina e la tossicità di alcune frazioni –
Il glutine è un composto proteico formato dalla prolammina, nota col nome di gliadina nel frumento e responsabile dei principali fenomeni di reazioni avverse, e dalla glutenina presenti principalmente nell’endosperma della cariosside di cereali quali frumento, farro, segale e orzo. Il glutine si forma quando acqua, farina e lievito sono mescolati: gliadina e glutenina si uniscono formando un impasto caratterizzato da viscosità, elasticità e coesione. Pertanto la quantità e il grado d’integrità delle proteine che compongono il glutine presente in una farina sono un importante indice per valutarne la qualità e l’attitudine alla panificazione.
Gliadina e glutenina, pertanto, sono state oggetto di numerosissime ricerche sia in relazione alle proprietà riguardanti le caratteristiche reologiche degli impasti sia riguardo alle reazioni avverse che attivano del sistema immunitario. Sono stati gli studi riguardanti la celiachia che hanno scoperto chi e come causa questa patologia: sono alcuni peptidi (un insieme di aminoacidi) presenti, soprattutto nella gliadina che contengono delle sequenze che sono tossiche, cioè attivano, nei soggetti geneticamente predisposti, la reazione avversa del sistema immunitario. La gliadina, a sua volta, è composta da diverse sub unità e queste contengono in diversa quantità e qualità le frazioni “tossiche”.
Non solo la ricerca di William Hekkins ha messo in luce come anche la forma e la posizione delle molecole della gliadina influenzano non solo le proprietà chimiche e fisiche ma anche la tossicità.
“The gliadin proteins are heterogenous in different regions of the molecule and consequently differ in phisical and chemical properties. About 35% of the gliadin molecule is the alfa helix form, whereas 35% are beta turns(5). The latter are concentrated in the N terminal and C terminal more apolar parts of the gliadin. The remaining part has a random structure. These form have conseguences for the immunogenecity of the different regions in the molecule. Especially beta-turns are immunogenic.” The Toxicity of wheat prolamins William TH. J. M. Hekkens Annales Nestlé 1995 n. 51.
Lo studio ha analizzato anche il meccanismo alla base della tossicità rilevando come “ il passaggio di frammenti di gliadina non digeriti (frammenti più lunghi di 8 aminoacidi) o una minore tolleranza alla gliadina provochi la reazione del sistema immunitario”.
Non è sufficiente, dunque, sapere quanta gliadina è presente in un grano, ma occorre avere lo screening completo delle sue sub unità (qualità, quantità, e, in accordo con lo studio citato anche forma e posizione).
Lo studio sulla “struttura della gliadina” potrebbe in parte, spiegare perché alcuni grani antichi (ad esempio il monococco) pur avendo una quantità di gliadina (e segnatamente alfa gliadina) non inferiore ai grani moderni presenta livelli di tossicità nulli o quasi.
Approfondimenti
Il Glutine e le frazioni “tossiche”