Header Image - Gluten Light

Tag Archives

3 Articles

Perché i legami intermolecolari “fanno” la forza del glutine

by luciano

(approfondimento 1 di Potenziale genetico e condizioni di processo nella determinazione della forza del glutine, della digeribilità e dell’immunogenicità)

Il glutine è una rete proteica che emerge quando gliadine e glutenine vengono idratate e messe sotto energia meccanica (impasto) o termica (riscaldamento). La sua “forza” (tenacità/elasticità e capacità di sostenere stress) dipende da due famiglie di interazioni:

1 -Legami covalenti disolfuro (S–S).

Rappresentano i cross-link più stabili e strutturali della rete. Nelle glutenine, in particolare nelle subunità ad alto e basso peso molecolare (HMW-GS e LMW-GS), i ponti disolfuro intermolecolari consentono l’assemblaggio di lunghi polimeri proteici, spesso indicati come glutenin macropolymer (GMP). Questo impalcato polimerico costituisce la vera ossatura elastica del glutine e ne determina in larga misura la resistenza meccanica e la capacità di accumulare energia elastica durante la deformazione.

2 -Interazioni non covalenti (idrofobiche, legami a idrogeno, ioniche).

Sono singolarmente più deboli dei legami covalenti, ma estremamente numerose e dinamiche. Queste interazioni governano l’associazione laterale tra catene, la compattazione locale delle proteine e l’organizzazione della rete su scala fine. In pratica, non “costruiscono” l’impalcatura principale, ma ne modulano la densità, la flessibilità e la capacità di riorganizzarsi in risposta a variazioni di idratazione, temperatura, pH e forza meccanica. Numerosi studi mostrano che modifiche della struttura secondaria (α-eliche, β-foglietti) e delle interazioni non covalenti accompagnano — e in alcuni casi amplificano — gli effetti prodotti dai legami disolfuro.

Un punto chiave:

La rete del glutine non è statica. Durante l’impastamento e le successive lavorazioni avvengono reazioni di scambio tiolo–disolfuro (–SH/–S–S–) che consentono una continua riorganizzazione dei collegamenti tra catene proteiche. Questo rimodellamento permette alla rete di adattarsi allo stress, riparare connessioni danneggiate e, entro certi limiti, aumentare la propria coesione. In generale, una maggiore disponibilità di gruppi reattivi e una più efficiente riorganizzazione dei ponti S–S sono associate a una rete tendenzialmente più forte, più resiliente e meglio bilanciata tra estensibilità ed elasticità.

Implicazioni pratiche per l’impasto
Dal punto di vista operativo, la forza del glutine non dipende solo dal potenziale genetico della farina, ma anche da come il sistema viene “messo nelle condizioni” di esprimere e organizzare i propri legami intermolecolari.

Idratazione adeguata: l’acqua agisce come plastificante e consente alle proteine di muoversi, interagire e riallinearsi. Idratazioni troppo basse limitano la formazione della rete; idratazioni più elevate favoriscono la mobilità molecolare e la riorganizzazione dei legami, rendendo il glutine più estensibile.
Energia di impasto: l’azione meccanica facilita il contatto tra catene proteiche e accelera le reazioni di scambio tiolo–disolfuro. Un impasto insufficiente porta a una rete incompleta; un eccesso di energia può invece causare rottura e riorganizzazione eccessiva dei legami, con perdita di struttura.
Tempo di riposo: fasi di riposo (autolisi, puntata) permettono alle interazioni non covalenti e ai disolfuri di redistribuirsi verso configurazioni più stabili, migliorando equilibrio tra elasticità ed estensibilità.
Condizioni chimiche: pH, sali e presenza di agenti ossidanti o riducenti influenzano direttamente l’equilibrio tra gruppi –SH e ponti –S–S–, modulando la densità di cross-link nella rete.
In sintesi, le pratiche di impasto non creano nuove proteine, ma determinano quanto efficacemente i legami intermolecolari disponibili vengono organizzati, traducendo il potenziale della farina in proprietà reologiche osservabili.

Pane di grano monococco 100%: la forza del glutine fa la differenza

by luciano

Lo studio ha lo scopo di valutare il ruolo della forza del glutine di uno stesso genotipo (imprinting genetico uguale) ma con coltivazione differente sul volume finale del pane.
Sono stati, quindi, realizzati due pani con due farine di grano monococco del tutto identici per quantità di ingredienti e modalità di esecuzione. Entrambe le farine utilizzate appartengono al genotipo monococco tipo ID331; uno (A) coltivato senza alcun fertilizzante né altri composti chimici, l’altro (B) coltivato con l’apporto di azoto.

Entrambi i pani sono stati preparati con la stessa metodica:
New Method for making fermented bakery products n. EP 3305078B1: at the bottom of https://glutenlight.eu/en/2019/09/27/einkorn-bread100/
Il risultato evidenzia in modo netto come la forza del glutine (1) abbia svolto un ruolo decisivo nel conferire al pane (B) un volume superiore, una mollica più aperta e regolare (Foto NN. 3, 4, 5, 6, 7, 8).

E’ noto che l’apporto di azoto contribuisce ad aumentare sia la quantità che la forza del glutine (2). Questo è stato un fattore decisivo per lo sviluppo dell’agrotecnica che ha permesso da avere farine con una migliore lavorabilità dal punto di vista industriale; l’aumento della forza del glutine ha, però, comportato parallelamente un glutine meno digeribile (3) e meno tollerabile (4).

Importanza delle subunità HMM del glutine (aggiornamento 21-01-2020)

by luciano

Estratto dallo studio: The structure and properties of gluten

“….omissis. Un gruppo di proteine ​​del glutine, le subunità HMM della glutenina, è particolarmente importante nel conferire alti livelli di elasticità (ovvero la resistenza della pasta). Queste proteine ​​sono presenti nei polimeri HMM che sono stabilizzati dai legami disolfuro e sono formano “l’ossatura elastica” del glutine. Tuttavia, le sequenze ripetitive ricche di glutammina che comprendono le parti centrali delle subunità HMM formano anche estese matrici di legami idrogeno tra di loro legati che possono contribuire alle proprietà elastiche attraverso un meccanismo “loop and train*”. L’ingegneria genetica può essere utilizzata per manipolare la quantità e la composizione delle subunità HMM, portando a un aumento della forza dell’impasto o a cambiamenti più drastici nella struttura e nelle proprietà del glutine.

….omissis … Queste proprietà sono generalmente descritte come viscoelasticità, con l’equilibrio tra estensibilità ed elasticità che determina la qualità dell’uso finale. Ad esempio, per la panificazione sono necessari impasti altamente elastici (“forti”) ma impasti più estensibili per preparare torte e biscotti. Omissis … Le proteine ​​del grano determinano le proprietà viscoelastiche dell’impasto, in particolare le proteine ​​di conservazione che formano una rete nell’impasto chiamata glutine (Schofield 1994). Di conseguenza, le proteine ​​del glutine sono state ampiamente studiate per un periodo superiore a 250 anni, al fine di determinare le loro strutture e proprietà e fornire una base per manipolare e migliorare la qualità dell’uso finale.”

*

…omissis. As a result of the formation of a protein matrix, individual cells of wheat flour contain networks of gluten proteins, which are brought together during dough mix ing. The precise changes that occur in the dough during mixing are still not completely understood, but an increase in dough stiffness occurs that is generally considered to result from ‘optimization’ of protein–protein interactions within the gluten network. In molecular terms, this ‘optimization’ may include some exchange of disulphide bonds as mixing in air, oxygen and nitrogen result in different effects on the sulphydryl and disulphide contents of dough (Tsen & Bushuk 1963; Mecham & Knapp 1966).