Header Image - Gluten Light

Tag Archives

3 Articles

Immunogenicità e resistenza alla digestione nel glutine (e perché non coincidono sempre)

by luciano

(approfondimento 6 di Potenziale genetico e condizioni di processo nella determinazione della forza del glutine, della digeribilità e dell’immunogenicità)

Nel glutine (soprattutto gliadine e, in parte, glutenine) esiste una forte sovrapposizione tra:

  • resistenza alla digestione gastrointestinale

  • potenziale immunogenico (soprattutto nella celiachia)

ma i due concetti non sono equivalenti: la resistenza è spesso una condizione favorente, mentre l’immunogenicità richiede anche specifiche regole di riconoscimento immunologico.

1) Perché molte sequenze immunogeniche sono anche resistenti

Le regioni più “problematiche” del glutine sono ricche di prolina (P) e glutammina (Q). Questo profilo:

  • ostacola il taglio da parte delle principali proteasi umane (pepsina, tripsina, chimotripsina), che hanno bassa capacità di scindere vicino alla prolina;

  • favorisce la persistenza di oligopeptidi lunghi (10–30+ aa) nel lume intestinale.

Questo punto è descritto bene in review e studi sperimentali sulla digestione del glutine e sulla persistenza di peptidi come il 33-mer. (Cambridge University Press & Assessment)

2) Perché la resistenza aumenta la probabilità di “rimanere immunogenici” dopo digestione

Un peptide che resiste:

  • resta abbastanza lungo da contenere epitopi completi (o più epitopi sovrapposti);

  • può generare, con tagli parziali, sotto-frammenti che conservano ancora sequenze riconoscibili.

In altre parole: non è solo “sopravvivere” alla digestione, ma sopravvivere mantenendo motivi di sequenza compatibili con la presentazione immunitaria.

Studi di peptidomica/digestione in vitro su prodotti di frumento mostrano che il profilo di peptidi residui include spesso regioni note per epitope-densità e resistenza. (ScienceDirect)

3) Cosa rende un peptide davvero immunogenico (oltre alla resistenza)

Per innescare la risposta T nella celiachia, un peptide deve:

  1. essere presentabile da HLA-DQ2/DQ8 (vincoli di sequenza e “ancore”);

  2. spesso diventare più affine tramite deamidazione da parte della transglutaminasi tissutale (TG2) (conversione di Q→E in contesti specifici);

  3. essere riconosciuto da T-cellule specifiche.

Quindi è possibile avere peptidi molto resistenti che però:

  • non legano bene HLA-DQ2/DQ8,

  • non sono buoni substrati per TG2,

  • e/o non corrispondono a epitopi T noti.

Un riferimento classico sulla presentazione HLA-DQ2 di peptidi del glutine è disponibile su PNAS. (pnas.org)

4) Esempio concreto: peptide resistente ma non immunogenico

Un esempio molto utile (anche se ingegnerizzato) è descritto da Bethune et al.: gli autori hanno creato analoghi del 33-mer in cui alcune glutammine chiave sono sostituite (es. NNN-33-mer e HHH-33-mer). Questi analoghi:

  • restano resistenti alla digestione simulata (pepsina e anche digestione duodenale con proteasi pancreatiche/brush border),

  • ma non sono apprezzabilmente riconosciuti da TG2, HLA-DQ2 o T-cellule specifiche della celiachia.

Questo dimostra sperimentalmente che resistenza alla digestione ≠ immunogenicità, anche quando la lunghezza e la “prolina-ricchezza” restano simili. (PMC)

Nota: è un esempio “pulito” perché mantiene la caratteristica di resistenza ma spezza (con modifiche mirate) i requisiti immunologici di riconoscimento.

5) Sintesi

Le sequenze immunogeniche del glutine tendono a essere sovrarappresentate tra i frammenti resistenti alla digestione, perché la resistenza consente la persistenza di peptidi sufficientemente lunghi e ricchi di epitopi; tuttavia l’immunogenicità richiede anche compatibilità con la presentazione HLA-DQ2/DQ8 e spesso la modificazione (deamidazione) mediata da TG2.

Approfondimento

Finora non è stata esplorata in modo sistematico e profondo la variabilità genetica e tecnologica di tutto il pool di frammenti resistenti alla digestione, perché la maggior parte degli studi si concentra sui peptidi immunogenici noti piuttosto che sul repertorio completo dei frammenti proteolisi-resistenti in relazione a genotipo/processo. (Frontiers)

Il peptide 33-mer — perché è un riferimento fondamentale

by luciano

(approfondimento 2 di Potenziale genetico e condizioni di processo nella determinazione della forza del glutine, della digeribilità e dell’immunogenicità)

Il peptide 33-mer (sequenza LQLQPFPQPQLPYPQPQLPYPQPQLPYPQPQPF) è riconosciuto come uno dei peptidi più resistenti alla digestione gastro-intestinale derivati dalle proteine del glutine e come uno dei principali stimolatori delle cellule T nel contesto della celiachia.
La sua importanza deriva da tre caratteristiche chiave:

1 – Resistenza enzimatica: la sua ricchezza in prolina e glutammina lo rende molto resistente agli enzimi digestivi umani (pepsina, tripsina, chimotripsina), permettendogli di persistere nel lume intestinale dopo la digestione in vitro e in vivo. (Nature)
2 – Immunogenicità elevata: contiene diverse porzioni (epitopi) riconosciute dalle cellule T dei pazienti celiaci, ed è stato tra i primi peptide identificati con questa caratteristica. (PubMed)
3 -Presenza nei frumenti più comuni: è presente nella maggior parte dei frumenti tetraploidi comuni (T. aestivum) e nella spelta, ma viene riportato assente nei tetraploidi/diploidi privi di D-genoma (come il grano duro, emmer e monococco). (ResearchGate)
Per questi motivi, il 33-mer è spesso utilizzato come marcatore per la valutazione della “immunogenicità da glutine” di farine/prodotti e per confrontare cultivar di frumento nell’ambito della ricerca sulla risposta immunitaria.

Risultati chiave degli studi sul 33-mer.
1 -Shan et al. (2002) — Identificazione e immunogenicità del 33-mer.Titolo: A resistant peptide from gliadin that is a potent activator of intestinal T cells in celiac disease. Autori: Shan L., Molberg Ø., Parrot I., Hausch F., Filiz F., Gray G.M., Sollid L.M., Khosla C. Pubblicato in: Science (2002). DOI: 10.1126/science.1074624
Risultato fondamentale: questo lavoro classico ha isolato e caratterizzato il peptide 33-mer come uno dei più potenti attivatori di cellule T nei pazienti celiaci e ha dimostrato che è estremamente resistente alla digestione proteolitica standard, confermando la sua rilevanza immunogenica. (PubMed)

2 -Vader et al. (2002) — Struttura e epitopi del 33-mer. Titolo: Structural basis for gluten intolerance in celiac sprue. Autori: Vader W., Stepniak D., Bunnik E., et al. Pubblicato in: Journal of Experimental Medicine (2002) DOI: 10.1084/jem.20020609
Risultato fondamentale: mappatura dei principali epitopi immunogenici presenti nelle gliadine, mostrando perché sequenze come il 33-mer — con epitopi multipli e sovrapposti — risultano così “attive” nel contesto immunitario. (d-nb.info)

3 -Schalk et al. (2017) — Quantificazione e distribuzione del 33-mer nei frumenti. Titolo: Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Autori: Kathrin Schalk, Christina Lang, Herbert Wieser, Peter Koehler & Katharina Anne Scherf. Pubblicato in: Scientific Reports (2017) DOI: 10.1038/srep45092 (Nature)
Questo studio ha misurato il contenuto del 33-mer in un ampio insieme di campioni di farine (moderne e antiche) usando un metodo mirato (SIDA + LC-MS/MS), contribuendo con dati importanti alla nostra comprensione della variabilità di questo peptide nello spettro dei genotipi di frumento.

Risultati specifici da Schalk et al. (2017)
Panoramica generale:

Il 33-mer è stato rilevato in tutte le farine di frumento comune (hexaploide, Triticum aestivum) e spelta analizzate.
I valori rilevati variavano approssimativamente da 90,9 μg/g a 602,6 μg/g di farina.
Invece non è stato rilevato (< limite di rivelabilità) nei cereali privi del D-genoma come grano duro, emmer ed einkorn (monococco), coerente con l’assenza di α2-gliadine che codificano questo peptide. (ResearchGate)
Interpretazione: la variabilità osservata indica che, anche all’interno dei frumenti più “simili” dal punto di vista tassonomico, la quantità di peptide 33-mer può variare considerevolmente, suggerendo che genotipo e variazione di cultivar influiscono in modo concreto sul contenuto di peptidi immunogenici legati alla celiachia.

Altri studi collegati e complementarietà
✔ Norwig et al. (2024) — confermano come il 33-mer sia presente in tutti i frumenti comuni e spelta analizzati, rafforzando il valore del focus su questo peptide nella letteratura peptidomica legata al glutine. (ACS Publications)

✔ Approcci proteomici più ampi (peptidomica) mostrano che il 33-mer è solo uno dei peptidi immunogenici che possono persistere dopo digestione, ma rimane un marcatore robusto per confronto tra genotipi e processi tecnici (fermentazione, cottura, ecc.). (ScienceDirect)

Box esplicativo: risultati principali di Schalk et al. (2017)
Contenuto del peptide 33-mer (μg/g di farina) nei frumenti analizzati
Lo studio ha mostrato che il peptide 33-mer è presente in tutte le farine di frumento comune e spelta analizzate con i seguenti caratteristiche: (Nature)

Valore minimo osservato: ~90,9 μg/g di farina
Valore massimo osservato: ~602,6 μg/g di farina
Distribuzione: la maggior parte dei campioni si colloca nel range 200–400 μg/g
Assenza: il peptide non è stato rilevato in Triticum durum (grano duro), T. turgidum dicoccum (emmer) e T. monococcum (monococco), probabilmente per l’assenza dell’α2-gliadina D-genomica. (ResearchGate)

Perché questa sottosezione rende il quadro completo e leggibile
✅ Partendo da un concetto biologico chiaro (resistenza + immunogenicità), questa sottosezione collega:

a – meccanismi molecolari (epitopi multipli nel peptide),
b – evidenze sperimentali classiche,
c – dati quantitativi reali su cultivar diverse,
d – coerenza con la variabilità osservata in studi più ampi (peptidomica).

Questo fornisce al lettore un quadro solido per comprendere non solo che il 33-mer esiste, ma perché la sua presenza/quantità varia tra grani e perché conta per la digestione e la risposta immunitaria.

Grano monococco: perchè è cosi importante

by luciano

Riassunto delle principali caratteristiche del grano monococco che gli conferiscono grande potenzialità per essere utilizzato per la preparazione di prodotti da forno salati ma anche dolci per le persone che:
a – sono geneticamente predisposte per la celiachia (1) (2) (3) (4) (5),
b – debbono tenere sotto controllo l’indice glicemico (6),
c- sono sensibili al glutine non celiache, reintroducono il glutine dopo la sua esclusione (7),
d – hanno difficoltà con la digestione del glutine (8).
e – sono sensibili alle ATI -amylase trypsina inibitors-. (9)
Da sottolineare, anche, le elevate qualità nutrizionali del grano monococco (10) (11).
(1) ………..omissis. “Conclusions: Our data show that the monococcum lines Monlis and ID331 activate the CD T cell response and suggest that these lines are toxic for celiac patients. However, ID331 is likely to be less effective in inducing CD because of its inability to activate the innate immune pathways”. Immunogenicity of monococcum wheat in celiac patients. Carmen Gianfrani et altri. Am J Clin Nutr 2012;96:1339–45.

(2) ………omissis. “D’altra parte, tenuto conto che l’incidenza e la gravità della celiachia dipende dalla quantità e dalla nocività delle prolamine e che alcuni genotipi di grano monococco hanno una elevata qualità panificatoria accoppiata con assenza di citotossicità e ridotta immunogenicità, è atteso che l’uso delle farine di monococco nella dieta della popolazione generale, all’interno della quale si trova una elevata percentuale di individui predisposti geneticamente alla celiachia ma non ancora celiaci, possa contribuire a contenere la diffusione di questa forma di intolleranza alimentare. Ciò lascia pensare che il grano monococco, riportato recentemente in coltivazione in Italia dai ricercatori del Consiglio per la Ricerca e la sperimentazione in Agricoltura (CRA) di Roma e San Angelo Lodigiano, potrà svolgere un ruolo importante nella prevenzione della celiachia, sia direttamente sotto forma di pane e pasta sia indirettamente come specie modello per lo studio del ruolo dell’immunità innata nell’insorgenza della celiachia”. Le nuove frontiere delle tecnologie alimentari e la celiachia Norberto Pogna, Laura Gazza (2013).

(3)-Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: Implication for celiac disease
Carmen Gianfrani, Alessandra Camarca, Giuseppe Mazzarella, Luigia Di Stasio, Nicola Giardullo, Pasquale Ferranti, Gianluca Picariello, Vera Rotondi Aufiero, Stefania Picascia, Riccardo Troncone, Norberto Pogna, Salvatore Auricchio
and Gianfranco Mamone. Mol. Nutr. Food Res. 2015, 00, 1–11
Scope: The ancient diploid Triticum monococcum is of special interest as a candidate low-toxic wheat species for celiac disease patients. Here, we investigated how an in vitro gastro-intestinal digestion, affected the immune toxic properties of gliadin from diploid compared to hexaploid wheat.

Method and results: Gliadins from Triticum monococcum, and Triticum aestivum cultivars were digested using either a partial proteolysis with pepsin-chymotrypsin, or an extensive degradation that used gastrointestinal enzymes including the brush border membrane enzymes. The immune stimulatory properties of the digested samples were investigated on T-cell lines and jejunal biopsies from celiac disease patients. The T-cell response profile to the Triticum mono coccum gliadin was comparable to that obtained with Triticum aestivum gliadin after the partial pepsin-chymotrypsin digestion. In contrast, the extensive gastrointestinal hydrolysis drastically reduced the immune stimulatory properties of Triticum monococcum gliadin. MS-based analy- sis showed that several Triticum monococcum peptides, including known T-cell epitopes, were degraded during the gastrointestinal treatment, whereas many of Triticum aestivum gliadin survived the gastrointestinal digestion.
Conclusion: he pattern of Triticum monococcum gliadin proteins is sufficiently different from those of common hexaploid wheat to determine a lower toxicity in celiac disease patients following in vitro simulation of human digestion.

(4) …….omissis. “Abstract. A growing interest in developing new strategies for preventing coeliac disease has motivated efforts to identify cereals with null or reduced toxicity. In the current study, we investigate the biological effects of ID331 Triticum monococcum gliadin-derived peptides in human Caco-2 intestinal epithelial cells. Triticum aestivum gliadin derived peptides were employed as a positive control. The effects on epithelial permeability, zonulin release, viability, and cytoskeleton reorganization were investigated. Our findings confirmed that ID331 gliadin did not enhance permeability and did not induce zonulin release, cytotoxicity or cytoskeleton reorganization of Caco-2 cell monolayers. We also demonstrated that ID331 ω-gliadin and its derived peptide ω(105–123) exerted a protective action, mitigating the injury of Triticum aestivum gliadin on cell viability and cytoskeleton reorganization. These results may represent a new opportunity for the future development of innovative strategies to reduce gluten toxicity in the diet of patients with gluten intolerance”. Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium. Giuseppe Jacomino et altri 2016.

(5)………omissis. “Scientific research has several times supported and encouraged the use of grains with low toxicity in the prevention of celiac disease; in the research we are now presenting, some grains have been studied highlighting their profile regarding both the presence of peptides resistant to gastro-intestinal digestion and, among these, those containing the “toxic” fraction (table 3) “ ….omissis Even if none of them can be considered safe for CD patients, grain with reduced amount of major T-cell stimulatory epitopes may help in the prevention of CD, since previous studies demonstrated that the amount and duration to gluten exposure are strictly linked to the initiation of this pathology.” (A Comprehensive Peptidomic Approach to Characterize the Protein Profile of Selected Durum Wheat Genotypes: Implication for Coeliac Disease and Wheat Allergy. Rosa Pilolli , Agata Gadaleta, Luigia Di Stasio , Antonella Lamonaca, Elisabetta De Angelis , Domenica Nigro , Maria De Angelis , Gianfranco Mamone and Linda Monac. Published: 1 October 2019).
(6) ….omissis. Non tutto l’amido è rapidamente idrolizzato durante la digestione, la frazione che resiste alla digestione e all’assorbimento nell’intestino tenue umano è definita “amido resistente” e ha effetti fisiologici comparabili a quelli della fibra alimentare. Il grano monoccoco però ha un basso contenuto (0,2%) in “amido resistente” se confrontato con il grano tenero(0,4- 0,8%) (Abdel-Aal et al. 2008).

(7) ….omissis. “Once the diagnosis of NCGS is reasonably reached, the management and follow-up of patients is completely obscure. A logical approach is to undertake a gluten-free dietary regimen for a limited period (e.g., six months), followed by the gradual reintroduction of gluten. During the gluten-free diet, the ingestion of prolamine peptide (gliadin)-derived from wheat, rye, barley, oats, bulgur, and hybrids of these cereal grains-should be avoided. Rice, corn, and potatoes have been the typical substitutes, but nowadays other different cereals and pseudocereals, such as amaranth, buckwheat, manioc, fonio, teff, millet, quinoa, and sorghum, can be used. After some period on a gluten-free diet, the reintroduction of gluten can start with cereals of low gluten content (e.g., oats). In addition, einkorn farro (Triticum monococcum) can be used, having no direct in vitro or ex vivo toxicity and low (7%) gluten content[41]”. (Non-celiac gluten sensitivity: Time for sifting the grain. Luca Elli, Leda Roncoroni, and Maria Teresa Bardella. Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc.