Header Image - Gluten Light

Daily Archives

2 Articles

Grano Monococco varietà Norberto (ID331) II parte

by luciano

ATI: inibitori dell’alfa-amilasi/tripsina

Un’altra caratteristica importante del grano monococco è quella di avere una limitatà quantità (segnatamente inferiore a quella nei grani duri e teneri) delle proteine denominate ATI- Inibitori dell’amilasi/tripsina (Wheat amylase trypsin inhibitors).
Le ATI, proteine contenute anche nel grano, inibiscono l’attività dell’enzima amilasi che è deputato alla digestione dell’amido, sono di difficile digestione e possono contribuire ad esacerbare l’infiammazione intestinale come evidenziato in molteplici studi [1, 2, 3].
Specificatamente le ATI:
1 – Possono ridurre la digeribilità del cibo nel tratto gastrointestinale (human and microbiome; Weegels 1994)
2 – Possono aumentare l’effetto dei peptidi allergenici incrementando reazioni infiammatorie ed allergiche (Junker et al. 2012; Zevallos et al 2014)
3 – Possono interagire fortemente con l’epitelio intestinale (….may strongly interact with the small intestine epithelium that can cause inflammation by itself) (Zevallos et al 2014)
4 – Possono aumentare l’effetto dei peptidi non digeriti e dei carboidrati; specialmente quelli a rapida digestione (FODMAPS) (………..that are a major cause of Irritable Bowel Syndrome (IBS) which affects 7% to 21% of the general population). (Chey et al 2015)

Nel grano monococco la presenza delle ATI è significativamente inferiore [4, 5] rispetto al grano duro e tenero conferendo a questo grano una forte caratteristica nel mantenere la salute e aumentare il benessere fisico.
In uno studio che ha valutato il contenuto delle Ati in 8 grani monococco rispetto al grano duro è stato rilevato che i livelli delle ATI erano al massimo il 10% di quelli delle altre specie di frumento. Lo studio evidenzia anche la possibilità il gene per ATI di poter essere silenziato o espresso in quantità molto basse nel farro [6, 7]
Nota:
L’amilasi è un enzima che idrolizza (digerisce) l’amido. È prodotto e secreto dalle ghiandole salivari (isoenzima salivare) e dal pancreas (isoenzima pancreatico). L’amilasi salivare inizia la digestione degli amidi fino a rilasciare maltosio, maltotriosio e destrani: l’amilasi pancreatica rilascia nell’intestino zuccheri semplici per l’assorbimento.

Referenze:
1 – (……..Amylase/trypsin inhibitors (ATIs) are major wheat allergens and they are also implicated in causing non-celiac gluten sensitivity and worsening other inflammatory conditions). Comparative quantitative LC–MS/MS analysis of 13 amylase/trypsin inhibitors in ancient and modern Triticum species. Sabrina Geisslitz et al. 2020.
2 – (………Wheat amylase trypsin inhibitors (ATIs) represent a common dietary protein component of gluten-containing cereals (wheat, rye, and barley). They act as toll-like receptor 4 ligands, and are largely resistant to intestinal proteases, eliciting a mild inflammatory response within the intestine after oral ingestion. Importantly, nutritional ATIs exacerbated inflammatory bowel disease and features of fatty liver disease and the metabolic syndrome in mice). Dietary Wheat Amylase Trypsin Inhibitors Impact Alzheimer’s Disease Pathology in 5xFAD Model Mice. Malena dos Santos Guiherme et al 2020.
3 – (…….Wheat on the other hand contains anti-enzymes, such as the ATIs (amylase-trypsin inhibitors) with a role in non-celiac gluten sensitivity (NCGS). Nutritional ATIs additionally stimulate the innate immune reaction via TLR4 and thereby exacerbate allergic inflammation not only in the intestine, but also in the airways in mouse models. It is hypothesized that industrial food processing contributes to the increased numbers of non-celiac gluten/wheat sensitivity by stabilizing e.g., starch-gluten complexes, thereby bypassing the salivary and pancreatic enzymes, leaving the digestion to mucosal amylases). The Effect of Digestion and Digestibility on Allergenicity of Food Isabella Pali-Schöll et al. 2018.

4 – Comparative quantitative LC–MS/MS analysis of 13 amylase/trypsin inhibitors in ancient and modern Triticum species. Sabrina Geisslitz et al. 2020.

5 – (…….The results point to a better tolerability of einkorn for NCGS patients, because of very low total ATI contents ). Targeted LC-MS/MS Reveals Similar Contents of α-Amylase/Trypsin-Inhibitors as Putative Triggers of Nonceliac Gluten Sensitivity in All Wheat Species except Einkorn. Sabrina Geisslitz et al. (Agric Food Chem 2018 Nov 21;66(46):12395-12403. doi: 10.1021/acs.jafc.8b04411. Epub 2018 Nov 6.)

6 – Cooper, R. Re-discovering ancient wheat varieties as functional foods. Journal of Traditional and Complementary Medicine 2015, 5(3), 138-143.

7 – Longin, C. F. H.; Ziegler, J.; Schweiggert, R.; Koehler, P.; Carle, R.; Wuerschum, T. Comparative Study of Hulled (Einkorn, Emmer, and Spelt) and Naked Wheats (Durum and Bread Wheat): Agronomic Performance and Quality Traits. Crop Science 2015, 302-311.

5 – La digeribilità dell’amido di grano monococco
Il contenuto di amilosio in T. monococcum (23,3-28,6% dell’ amido totale) (Hidalgo et al.. 2014) è più basso rispetto al grano duro (30%) e al grano tenero (35-43%). Non tutto l’amido è rapidamente idrolizzato durante la digestione, la frazione che resiste alla digestione e all’assorbimento nell’ intestino tenue umano è definita “amido resistente” e ha effetti fisiologici comparabili a quelli della fibra alimentare.
Inoltre possiede granuli di amido di piccole dimensioni (cosiddetti B-type) in proporzione maggiore rispetto ai frumenti coltivati. Anche i granuli d’amido di grosse dimensioni (A- type) presentano un diametro nettamente inferiore nel grano monococco (13,2 µm) rispetto al frumento duro (15,3 µm) o al frumento tenero (23,8 µm) (Taddei et al. 2009) e tutto ciò contribuisce alla elevata digeribilità degli alimenti a base di grano monococco (Taddei et al. 2009), di conseguenza la superficie per unità di peso dei granuli d’amido del grano monococco (764 µm) è maggiore rispetto al grano tenero (550 µm), e quindi più rapidamente idrolizzata da parte delle amilasi (Franco et al. 1992). Il grano monoccoco però ha un basso contenuto (0,2%) in “amido resistente” se confrontato con il grano tenero (0,4- 0,8%) (Abdel-Aal et al. 2008; Brandolini 2012; Dinu et al 2018).

Amido e digestione

by luciano

Il carboidrato complesso più diffuso tra le riserve vegetali è l’AMIDO

Da sottolineare:

  1. Il carboidrato complesso più diffuso tra le riserve vegetali è l’AMIDO; esso, chimicamente è composto da catene di amilosio (circa 20%) e amilopctina (circa 80%).

  2. La digestione dei carboidrati complessi inizia in bocca; durante la masticatura le ghiandole secernono la saliva che contiene un enzima, la ptialina o α–amilasi salivare, che inizia a idrolizzare l’amido (composto da amilosio e amilopctina) in destrine e maltosio; nello stomaco i carboidrati complessi NON subiscono altri processi di semplificazione a causa dell’ambiente acido [4]; verranno ulteriormente scissi nel duodeno.

  3. Nel duodeno verranno trasformati fino ad avere glucosio e fruttosio.

  4. Solo il glucosio è assimilabile in quanto tale e subito utilizzabile; il fruttosio è assimilabile in quanto tale ma deve essere trasformato in glucosio dal fegato.

    Premessa:

    I carboidrati di interesse alimentare vengono comunemente distinti:

    • semplici (zuccheri semplici)

    • complessi

    Gli zuccheri semplici possono essere classificati:

    • disponibili cioè utilizzabili dall’organismo

    • non disponibili cioè non digeribili, assorbibili e metabolizzabili (ad esempio il lattulosio, lo xilosio, xilitolo, mannitolo e il sorbitolo).

    Zuccheri semplici disponibili:

    • monosaccaridi: sono assorbiti come tali, come glucosio (subito utilizzabile dall’organismo) e fruttosio che è assimilato come tale ma per essere utilizzato dall’organismo DEVE essere trasformato in glucosio dal fegato [1]

    • disacccaridi come saccarosio, maltosio e lattosio. I disaccaridi vengono prima idrolizzati a monosaccaridi a livello dell’orletto a spazzola dei villi intestinali.

    Carboidrati complessi sono invece amorfi, insapori, insolubili, con un peso molecolare molto alto e digeribili lentamente.

    I carboidrati complessi si possono dividere in base alla loro varietà molecolare: quelli che contengono SOLO UN TIPO di monosaccaridi sono detti omopolisaccaridi, mentre quelli che ne contengono di DIVERSI si definiscono eteropolisaccaridi:

    • Omopolisaccaridi (migliaia di molecole): amido, glicogeno, cellulosa, inulina e chitina.

    • Eteropolisaccaridi (migliaia di molecole): emicellulose, mucopolisaccaridi, glicoproteine e pectine.

    Esiste anche una classificazione funzionale dei carboidrati complessi, che si basa sulla loro funzione biologica nel regno VEGETALE:

    • Nutrizionali: amido e glicogeno.

    • Strutturali: cellulosa, emicellulosa, pectina ecc.

    Amido

    Il carboidrato complesso più diffuso tra le riserve vegetali è l’AMIDO; esso, chimicamente composto da catene di amilosio (circa 20%) e amilopctina (circa 80%), rappresenta la fonte energetica primaria dell’alimentazione mediterranea (± 50% delle kcal totali).

    L’amilosio è un polimero lineare composto da 250-300 unità, contiene legami α1,4 glicosidici e risulta solubile in acqua; l’amilopectina è un polimero ramificato composto da 300-5000 unità, contiene legamiα-1,4 e (nei punti di ramificazione) α-1,6 glicosidici. I vari tipi di amido (frumento, orzo, riso, mais, patate ecc.) sono differenti per la struttura molecolare e presentano un indice glicemico differente; questo significa che, nonostante tutti gli gli amidi siano polimeri del glucosio, esiste una certa differenza strutturale che ne determina la velocità di digestione e assorbimento.

    Digestione dei carboidrati complessi

    La digestione dei carboidrati complessi inizia in bocca; durante la masticatura le ghiandole secernono la saliva che contiene un enzima, la ptialina o α–amilasi salivare [2], che inizia a idrolizzare l’amido (cotto) in destrine e maltosio;nello stomaco i carboidrati complessi NON subiscono altri processi di semplificazione a causa dell’ambiente acido [3], ma una volta immessi nel duodeno i carboidrati vengono idrolizzati dall’enzima pancreatico (α-amilasi pancreatica) scindendo definitivamente tutte le catene di amido tralasciate, amilosio e amilopectina, in disaccaridi. La digestione ultima dei disaccaridi avviene SELETTIVAMENTE nell’intestino tenue; i succhi che ritroviamo a livello intestinale sono tre: il succo pancreatico, che ovviamente proviene dal pancreas, la bile, proveniente dal fegato, ed il succo enterico che viene prodotto direttamente dall’intestino tenue. Il pancreas possiede una porzione endocrina, deputata alla produzione di vari ormoni come glucagone ed insulina, ed una porzione esocrina, che sintetizza il succo pancreatico. All’interno di questo succo ritroviamo molti enzimi capaci di idrolizzare la gran parte dei princìpi nutritivi. Tra questi, un ruolo importante è ricoperto dall’amilasi pancreatica, un enzima deputato alla digestione dell’amido. L’aggettivo “pancreatica” viene utilizzato per distinguerla dalla ptialina o amilasi salivare che, nonostante la diversa provenienza, ricopre la medesima funzione.

    L’amilasi pancreatica scinde l’amido presente negli alimenti in maltosio, maltotriosio e destrine (molecole glucidiche in cui rimane una ramificazione), completando il lavoro iniziato dalla ptialina. A differenza di quanto avviene nella cavità orale, a livello intestinale viene digerito anche l’amido crudo, poiché la parete di cellulosa che lo racchiude viene lesa durante la permanenza nello stomaco. Sui microvilli sono presenti enzimi che completano la digestione dei vari princìpi nutritivi. A questo livello ritroviamo, per esempio, l’enzima saccarasi, che porta alla formazione di glucosio e fruttosio a partire da una molecola di saccarosio, l’enzima lattasi, che digerisce lo zucchero del latte scomponendolo in una molecola di glucosio ed una di galattosio, e l’enzima maltasi (presente sui microvilli intestinali), che digerisce il maltosio ed il maltotriosio scomponendoli nelle singole molecole di glucosio che li compongono. Infine, nell’intestino tenue è presente anche un enzima chiamato destrinasi, in grado di digerire le destrine, ed un quinto, detto nucleasi che, insieme alle ribonucleasi e alle desossiribonucleasi pancreatiche, che digerisce gli acidi nucleici.

    Le amilasi sono attive con un pH che varia tra 6.7 e 7, motivo per cui nell’ambiente decisamente acido dello stomaco (pH 1.5-3) la ptialina viene lentamente inattivata. Le amilasi, inoltre, non riescono a digerire l’amido contenuto nei granuli, motivo per cui è efficace solo se l’alimento viene cotto. Se l’amido è crudo, l’acidità gastrica favorisce la rottura dei granuli in cui è racchiuso, facilitando la successiva azione delle amilasi pancreatiche.

    Le amilasi non possono invece idrolizzare i legami di tipo α-1,6 (ramificati) presenti nella struttura dell’amilopectina;

    Glicogeno

    L’altro omopolisaccaride nutrizionale più diffuso ma appartenente al regno animale è il GLICOGENO; ha una struttura analoga all’amilopectina con 3000-30000 unità di glucosio e contiene legami α-1,4 e (nei punti di ramificazione) α-1,6 glicosidici. Si concentra nei muscoli, nel fegato e in minor parte nei reni (1-2%) degli animali. Il glicogeno è essenziale al mantenimento della glicemia e della prestazione atletica dello sportivo; la sua “ricarica” dipende dal tipo di alimentazione ma, mentre per il sedentario può essere ottemperata anche da diete con bassissimo contenuto di zuccheri (grazie alla neoglucogenesi), per lo sportivo essa dipende esclusivamente dalla quota di carboidrati ingeriti (soprattutto complessi).

    Riferimenti

    [1]Both glucose and fructose are absorbed relatively quickly, depending on what other nutrients are eaten at the same time. For example, a meal or food containing protein and fat causes the sugars to be absorbed more slowly than when consumed on their own. Digestion and Absorption. Margaret E. Smith PhD DSc, Dion G. Morton MD DSc, in The Digestive System (Second Edition), 2010

    [2] α-Amylases split the α-1,4 glycosidic linkages in amylose to yield maltose and glucose, but they do not act on maltose, a disaccharide composed of two glucose subunits linked by an α-1,4 linkage. In theory α-amylase will ultimately degrade a solution of amylose to maltose, and glucose which can be released from the ends of the chains (Fig. 8.5). Intermediate oligosaccharides (dextrins) are formed in the process. α-Amylases also attack amylopectin and glycogen at their α-1,4 linkages. Intermediate unbranched oligosaccharides and branched oligosaccharides (α-limit dextrins) are formed. Thus a mixture of products is produced (Fig. 8.5). Salivary amylase (namely ptyalin) starts the digestion of starch. [3] It continues to act for up to half an hour in the interior of the food bolus after it has arrived in the stomach. [4] It is eventually inactivated at the low pH produced by the gastric acid when it penetrates the food bolus. It can digest up to 50% of the starch present in food. Pancreatic juice that contains a second α-amylase is released into the duodenum when a meal is present in the digestive tract. Pancreatic amylase continues the digestion of starch and glycogen in the small intestine. It is produced in larger amounts than salivary amylase. The α-amylases from the two sources have similar catalytic properties, despite having different amino acid sequences. They both require Cl for optimum activity and both act at neutral or slightly alkaline pH values. Digestion and Absorption of Carbohydrate, Protein, and Fat. Mark Feldman MD, in Sleisenger and Fordtran’s Gastrointestinal and Liver Disease, 2021

    Approfondimenti

  5. A – Carboidrati complessi: funzioni nutrizionali, apporto con la dieta e alimenti che li contengono

    I carboidrati complessi sono nel nostro organismo la più importante fonte di energia di rapido utilizzo ma a basso costo. Eccetto la cellulosa e altre molecole non digeribili (quantitativamente secondarie), tutti i carboidrati che assumiamo con la dieta sono idrolizzati, assorbiti, trasportati al fegato ed eventualmente trasformati in glucosio. Oltre, all’omeostasi glicemica diretta, i carboidrati complessi contribuiscono al mantenimento delle riserve di glicogeno muscolare ed epatico, quest’ultimo deputato al sostenimento glicemico anche nel digiuno protratto. NB. L’omeostasi glicemica è essenziale al mantenimento della funzionalità nervosa, ma se l’apporto di carboidrati è eccessivo, può essere convertito in lipidi e contribuire all’incremento del deposito adiposo e/o della steatosi epatica (grassa e di glicogeno.I glucidi complessi “non digeribili” sono costituenti della fibra alimentare; questa, non essendo idrolizzabile dagli enzimi dell’organismo umano, una volta giunta nel colon subisce la fermentazione (e non la putrefazione) della flora batterica fisiologica. La fibra alimentare è quindi un prebiotico perché favorisce la crescita dei ceppi batterici più salubri a discapito di quelli nocivi. Deve essere introdotta per circa 30g/die, ripartita in solubile e insolubile; quella solubile (in acqua) determina la gelificazione delle feci, modula l’assorbimento dei nutrienti ed è costituita da: pectine, gomme,mucillagini e polisaccaridi delle alghe. La fibra insolubile provoca un aumento del volume gassoso stimolando le contrazioni peristaltiche di segmentazione e comprende soprattutto: cellulosa, emicellulose e lignina. Il fabbisogno complessivo di glucidi è pari al 55-65% delle kcal totali (mai inferiore al 50%), e di queste circa il 45-55% deve essere introdotto con i carboidrati complessi. La mancanza protratta di zuccheri può determinare effetti collaterali anche gravi, quali: marasma, perdita di peso, e deplezione muscolare, ritardi della crescita; d’altro canto, l’eccesso contribuisce: all’aumento di peso, all’obesità, a favorire la comparsa di diabete tipo 2 e alla patogenesi di altri dismetabolismi.
    Le fonti alimentari dei carboidrati complessi sono principalmente:

    • Cereali e derivati (pasta, pane, riso, orzo, farro, mais, segale ecc.)

    • Tuberi (patate)

    Le fonti alimentari della fibra sono principalmente:

    • Per la solubile: ortaggi e frutta, legumi.

    • Per l’insolubile: cereali e derivati, legumi.

    B – Tutti gli zuccheri sono composti ternari: idrogeno (H) + ossigeno (O) + carbonio (C) e la loro funzione biologica è differente tra il regno animale e quello vegetale; nel regno animale, i carboidrati sono deputati principalmente alla produzione di ATP (Adenosin Tri Fosfato – energia pura) o alla costituzione di riserve energetiche (glicogeno per circa l’1% del peso corporeo), mentre nel regno vegetale (organismi in grado di sintetizzarli “dal nulla” – autotrofi) questi assumono anche un’importante funzione STRUTTURALE (vedi cellulosa).

    CAnche i carboidrati complessi strutturali vegetali (omo- o eteropolisaccaridi), sono molecole di grande valore nutrizionale, ma privi di funzione energetica per l’UOMO. Essi, che possiedono ANCHE legami β-glicosidici, richiedono enzimi digestivi specifici ed ASSENTI nella nostra saliva, pancreas e intestino; per contro, molti altri animali e soprattutto diversi microorganismi (compresi quelli della flora batterica intestinale) sono in grado di idrolizzarli traendone energia con la produzione di acqua, acidi e gas.

    D – La cellulosa è un omo- strutturale costituito da lunghe catene di glucosio (3000-12000) legate da vincoli β-1,4 glicosidici. Nell’essere umano favorisce il transito intestinale e costituisce il membro principale dellafibra alimentare. Al contrario, l’INULINA è un omo- costituito da catene di FRUTTOSIO vincolate da legami β-2,1 glicosidici; è molto presente nei carciofi e nella cicoria dove rappresenta un substrato di riserva. La CHITINA è un omo- costituito da lunghe catene di un “derivato” del glucosio, la acetil-glucosamina; è di origine animale e costituisce il carapace dei crostacei e degli insetti.

    E – Etero-polisaccaridi

    Tra gli etero- spiccano le EMICELLULOSE; sono un ampio gruppo che contiene anche: xilani, pentosani, arabinosilani, galattani ecc. Anch’esse, come la cellulosa, costituiscono la fibra alimentare e rappresentano un substrato per la flora batterica intestinale che le utilizza a scopo energetico liberando gas ed acidi. I MUCOPOLISACCARIDI sono etero- presenti in tutti i tessuti animali, dove costituiscono l’elemento PRIMARIO del tessuto connettivo. I principali sono: acido ialuronico, la condroitina ee l’eparina. Le GLICOPROTEINE svolgono numerose funzioni biologiche all’interno dell’organismo; sono molecole coniugate da catene di amminoacidi e di glucidi; rientrano tra queste molecole le sieroalbumine, le globuline, il fibrinogeno, il collagene ecc. Tra le etero- di origine vegetale ricordiamo anche le PECTINE; lunghe catene di acido galatturonico combinate “parzialmente” con alcol metilico. Si combinano alla cellulosa e sono amorfe, idrofobe, NON fibrose; con presenza di acidi e zuccheri formano GELATINE e sono utilizzate come additivi alimentari nelle marmellate ecc.

    F – Types of Carbohydrates in Normal Diet

    The total amount of carbohydrate in a normal diet is 220 to 330 g/day for men and 180 to 230 g/day for women. Dietary carbohydrate exists in different molecular forms: polysaccharides, disaccharides, and monosaccharides. Starch from plant products and glycogen from meat are polysaccharides. Even though both are homopolymers consisting of only glucose, starch and glycogen differ in structure. Starch exists in 2 forms, namely amylose and amylopectin. Dietary carbohydrate exists in different molecular forms: polysaccharides, disaccharides, and monosaccharides. Starch from plant products and glycogen from meat are polysaccharides. Even though both are homopolymers consisting of only glucose, starch and glycogen differ in structure. In addition to the aforementioned carbohydrates, diet also contains carbohydrates in the form of fiber, which is neither digestible nor absorbable by the human intestine. Fiber includes cellulose, hemicellulose, gums, pectins, and chitin, all derived from plant sources. These indigestible carbohydrates, however, still provide significant health benefits by various mechanisms: (1) they increase the bulkiness of the luminal contents in the intestinal tract, thereby influencing transit time; (2) they affect the rate at which other components of the diet are digested and absorbed; (3) they pass through the small intestine undigested and when they reach the colon, bacteria are able to digest and ferment them to generate SCFAs, which are then absorbed for metabolic utilization in colonocytes or enter the portal circulation to be presented to the liver and then to other organs. These bacterial metabolites also elicit a multitude of biologic actions on colonic epithelial cells, enteroendocrine cells of the colon, and immune cells in the lamina propria via different mechanisms including the involvement of specific cell-surface G protein-coupled receptors. Small Intestine. Courtney M. Townsend JR., MD, in Sabiston Textbook of Surgery, 2022

    G- Oltre all’amilasi, il pancreas secerne diversi enzimi, come il tripsinogeno ed il chimotripsinogeno, che agiscono sulle proteine già parzialmente digerite dalla pepsina gastrica. Similmente a quanto avviene nello stomaco, anche questi due enzimi vengono secreti in una forma inattiva ed acquisiscono la capacità di digerire le proteine soltanto dopo essere stati secreti nel lume intestinale, dove vengono attivati dall’enzima enterochinasi.

    Tripsina e chimotripsina proguono l’attività della pepsina gastrica, riducendo ulteriormente i peptidi parzialmente idrolizzati nello stomaco. L’attività digestiva è completata dagli enzimi presenti nel succo, come le dipeptidasi, che scompongono gli oligopeptidi nei singoli aminoacidi che li compongono.

    Oltre ad amilasi, tripsina e chimotripsina, il succo pancreatico contiene un terzo enzima deputato alla digestione dei grassi. Tale enzima è chiamato lipasi e la sua azione è coadiuvata da un cofattore, detto colipasi, secreto dal pancreas come procolipasi ed attivato dalla tripsina.

    Nonostante questi enzimi, la digestione dei lipidi necessita obbligatoriamente di un’ulteriore sostanza, secreta dal fegato e chiamata bile. I principali componenti della bile sono i sali biliari, fondamentali per emulsionare i lipidi, e prodotti di rifiuto come colesterolo e pigmenti biliari. Queste sostanze vengono secrete nell’intestino per essere espulse con le feci e, mentre il colesterolo in eccesso può essere eliminato soltanto tramite questa via, i sali biliari possono essere escreti anche attraverso le urine.

    Una caratteristica comune a bile e succo pancreatico è la modesta basicità, garantita dalla presenza di bicarbonato di spdio, che ha il compito di neutralizzare l’acido cloridrico proveniente dallo stomaco. Grazie a questo sistema tampone, l’ambiente intestinale è neutro, tendente al basico.

    La bile è prodotta dal fegato, dal quale fuoriesce attraverso il dotto epatico per essere convogliata in un organo di deposito chiamato cistifellea. Tra un pasto e l’altro questa sacca raccoglie e concentra la bile, immettendola nel duodeno in concomitanza dei pasti.

    La secrezione pancreatica e biliare è stimolata da numerosi ormoni gastrointestinali (gastrina, secretina, colecistochinina ecc.). Esiste inoltre un controllo nervoso, che stimola la secrezione attraverso il nervo vago (parasimpatico) e la inibisce grazie alle fibre efferenti del sistema nervoso ortosimpatico.