Header Image - Gluten Light
Gallery

Magazine

L’effetto della digestione e della digeribilità sull’allergenicità degli alimenti (prima parte)

by luciano

“Riassunto: ….Omissis La digestione lungo il tratto gastrointestinale è essenziale per la disgregazione dei carboidrati e delle proteine ed è un prerequisito per un adeguato assorbimento nell’intestino dei loro componenti. La digestione e la digeribilità di carboidrati e proteine ​​influenzano quindi in modo critico il rischio di sviluppo di allergie alimentari. In questa recensione, mettiamo in evidenza l’influenza di amilasi, degli inibitori dell’acido gastrico e della tripsina, nonché della trasformazione degli alimenti nel contesto dell’allergenicità alimentare.
Omissis… .. Inoltre, la digestione e la digeribilità potrebbero determinare se le proteine ​​alimentari sono tollerate o diventano agenti sensibilizzanti. Questo aspetto è stato evidenziato dall’Agenzia europea per la sicurezza alimentare parere scientifico sulla valutazione dell’allergenicità delle proteine ​​alimentari e dei mangimi. Una maggiore resistenza alla digestione o alla sopravvivenza lungo il tratto digestivo sembra aumentare la capacità di sensibilizzazione di un componente alimentare e renderlo più immunogenico e / o allergenico. Sulla base di questo background scientifico, questo articolo di recensione evidenzia i fattori che influenzano la digestione e la digeribilità delle proteine.

Estratto dallo studio:

Digestion of Carbohydrates: Amylase Action Critical for Starch Digestion and Microbiome

……..Omissis. Starch is digested by specific enzymes, i.e., amylases, which cleave the α-1,4-glucosidic bond of its major compound amylose, as well as the α-1,6-glucosidic bond of the second major constituent, amylopectin [15].

….. Omissis. In humans, α-amylase is a product of the exocrine pancreas. Animal models suggest that microbial amylases could be supplied in pancreas insufficiency [18]. It is not known whether this will be linked to a risk for sensitization, but α-amylase per se when inhaled is a well-known occupational allergen. In baker’s asthma associated with the flour processing industry, allergenic amylase derives from contaminating fungi [19]. In mammals, amylase is also secreted into the saliva. Its role in starch digestion has been questioned due to its low amount relative to the overall amylase activity [20]. However, in vitro studies strongly propose that salivary amylolytic activity hydrolyzes up to 80% of bread starch in the first 30 min of gastric digestion, independent of acidification by the gastric juices [21]. This critically affects the quality of remnants reaching the intestine, which will affect the composition of the microflora (discussed below).

………Omissis. The amylase action on rapidly digestible starch (RDS) renders smaller products, like disaccharides and trisaccharides [25]. These are then further hydrolyzed to glucose by other enzymes, such as α-glucosidase in the small intestine [26]. However, both amylase and α-glucosidase may act synergistically. Some compounds represent slow-digestible starch (SDS), or resistant starch (RS) as larger leftovers, which persist the gastrointestinal transit to a large degree. Usually, resulting levels of malto-oligosaccharide indicate the degree of granular starch breakdown. The starch breakdown by amylases is largely influenced by the composition of the food processing and matrix composition. Cooking has been shown to enhance the amylase breakdown of starch [27], which also depended on the individual α-amylase activity. Flavonoids are important plant constituents, which interfere with amylase activity by hydrophobic interaction in the food matrix or by formation of covalent bonds during cooking or in gastric juice, and therefore impair starch digestion [28]. This opens up potential intervention strategies in diabetic patients to decrease the fermentation speed of starch and thereby inhibit an undesired fast release of glucose. Starch may also form complexes with lipids in the food matrix, e.g., complex formation with palm oil interfered with the digestion of rice starches [29]. Interestingly, some fresh food may neutralize amylases by proteolysis. Kiwi contains actinidin, a cysteine proteinase, which specifically attacks amylase and thereby may inhibit starch digestion [30]. This may affect the presentation of allergenic epitopes in the food matrix. Amylase in the duodenum also plays a key role in the breakdown of gluten and may therefore modulate its pathophysiologic role in celiac disease [31]. While starch forms complexes with gluten during baking of bread, amylase resolves them and makes gluten accessible for thorough protein digestion. Wheat on the other hand contains anti-enzymes, such as the ATIs (amylase-trypsin inhibitors) with a role in non-celiac gluten sensitivity (NCGS) [32]. Nutritional ATIs additionally stimulate the innate immune reaction via TLR4 [32] and thereby exacerbate allergic inflammation not only in the intestine, but also in the airways in mouse models [33,34]. It is hypothesized that industrial food processing contributes to the increased numbers of non-celiac gluten/wheat sensitivity by stabilizing e.g., starch-gluten complexes, thereby bypassing the salivary and pancreatic enzymes, leaving the digestion to mucosal amylases [35]”. “The Effect of Digestion and Digestibility on Allergenicity of Food Isabella Pali-Scholl, Eva Untersmayr, Martina Klems and Erika Jensen-Jarolim. Published: 21 August 2018 Nutrients.”

FODMAP: composizione degli alimenti, definizione dei “valori limite” di FODMAP tollerabili e applicazione internazionale

by luciano

Riassunto
La dieta a basso contenuto di FODMAP è una nuova terapia dietetica per la gestione della sindrome dell’intestino irritabile che sta guadagnando popolarità in tutto il mondo. Lo sviluppo della dieta a basso contenuto di FODMAP ha richiesto non solo dati dettagliati sulla composizione degli alimenti, ma anche l’istituzione di “valori limite” per classificare gli alimenti come a basso contenuto di FODMAP. Questi valori si riferiscono ad ogni particolare FODMAP presente in un alimento, inclusi oligosaccaridi (fruttani e galatto-oligosaccaridi), polioli di zucchero (mannitolo e sorbitolo), lattosio e fruttosio in eccesso di glucosio. I valori limite sono stati individuati considerando i livelli di FODMAP in porzioni tipiche di alimenti che comunemente scatenano sintomi in soggetti con sindrome dell’intestino irritabile, nonché alimenti generalmente ben tollerati. L’affidabilità di questi valori limite di FODMAP è stata testata in numerosi studi dietetici. Lo sviluppo delle tecniche per quantificare il contenuto FODMAP degli alimenti ha notevolmente migliorato la nostra comprensione della composizione degli alimenti. La composizione di FODMAP è influenzata dalle tecniche di trasformazione degli alimenti e dalla selezione degli ingredienti. Negli Stati Uniti, l’uso di sciroppi di mais ad alto contenuto di fruttosio può contribuire ai livelli più elevati di FODMAP rilevati (tramite eccesso di fruttosio) in alcuni alimenti trasformati. Poiché le tecniche e gli ingredienti di trasformazione degli alimenti possono variare da paese a paese, sono necessari dati più completi sulla composizione degli alimenti affinché questa dieta possa essere implementata più facilmente a livello internazionale.

Extrat from the study:
A – “ omissis The Monash University Department of Gastroenterology has performed extensive work for over 10 years to quantify the FODMAP composition of hundreds of foods. Foods tested for FODMAP content represent a range of categories, including fruit and vegetables; grains, cereals, pulses, nuts, and seeds; dairy products and dairy free alternatives; meat, fish, poultry, and eggs; fats and oils; beverages; and condiments and confectionary. Some of these data have been published previously (12 -14) and are summarized in Figs 1 and 2. With growing international interest in the low-FODMAP diet, our program of FODMAP food analysis is expanding to include more international foods. This paper will dis- cuss the criteria for classifying food as low in FODMAPs and the challenges encountered in analysing food for FODMAP content.

Prodotti da forno e gluten-free

by luciano

Il problema principale dei prodotti gluten-free è quello di creare una struttura “simile alla maglia glutinica” senza le proteine della farina in modo che il prodotto finale soddisfi le aspettative dei consumatori in relazione alla “leggerezza della struttura” e all’apparenza del pane fresco.
Per raggiungere questo scopo vengono utilizzati principalmente:
1. Idrocolloidi per la costruzione di una rete interna in grado di contenere la struttura dei prodotti fermentati;
2. Enzimi capaci di legare le proteine come glucosio ossidasi (1), transglutaminasi e laccasi per creare una rete proteica senza le proteine della farina

A – Estratto dallo studio: “Gluten-Free Products for Celiac Susceptible People:

TECHNOLOGICAL APPROACHES FOR MIMING GLUTEN IN GLUTEN-FREE BAKERY PRODUCTS
The formulation of gluten-free bakery products is still a challenge to both for cereal-cum-baking technologists. Replacing gluten functionality has been a challenge for food technologists. The absence of gluten leads to weak cohesion and elastic doughs which results in a crumbling texture, poor color, and low specific volume in bread. Hence, during the last few years, numerous studies have been attempted for improving the physical properties of gluten-free foods, especially baked and fermented foods, by utilizing the interaction of the many ingredients and additives which could mimic the property of gluten (28). Approaches proposed for obtaining gluten-free baked foods include the utilization of different naturally gluten-free flours (rice, maize, sorghum, soy, buckwheat) and starches (maize, potato, cassava, rice), dairy ingredients (caseinate, skim milk powder, dry milk, whey), gums and hydrocolloids (guar and xanthan gums, alginate, carrageenan, hydroxypropyl methylcellulose, carboxymethyl cellulose), emulsifiers (DATEM, SSL, lecithins), non-gluten proteins from milk, eggs, legumes and pulses, enzymes (cyclodextrin glycosyl tranferases, transglutaminase, proteases, glucose oxidase, laccase), and non-starch polysaccharides (inulin, galactooligosaccharides) (Table 1). Strengthening additives or processing aids has been fundamental for miming gluten’s iscoelastic properties (93), where mainly hydrocolloids have been used for building an internal network able to hold the structure of fermented products. Simultaneously with the same intention, different crosslinking enzymes such as glucose oxidase, transglutaminase, and laccase have been used to create a protein network within the flour proteins (94). However, the success of gluten-free products relied on the type of effect of the enzymes as gluten-free processing aids, type of flour, enzyme source, and level. Generally, the combinations of ingredients and the optimization of the breadmaking process have resolved the technological problems, yielding gluten-free products that met the consumer’s expectations concerning texture and appearance of the fresh bread (95).