Header Image - Gluten Light

Tag Archives

One Article

Fermentazione pasta acida (IV parte)

by luciano

Reologia della pasta acida: influenza dei Lattobacilli

“Effects of LAB to dough structure

The structural effects of sourdough in wheat-based system may first be due to the direct influence of low pH on structure-forming dough components, such as gluten, starch, arabinoxylan etc. (Angioloni et. al., 2006). Dough is very sensitive to changes in ionic strength and pH and such changes could have direct impact on the constituents of dough (Clarke et al., 2002). The drop in pH value caused by the produced organic acids influences the viscoelastic behaviour of dough. A correct description of the changes in dough behaviour is necessary to maintain handling and machinability in industrialized production (Wehrle et. al., 1997). A number of earlier studies have examined influence of acids and different pH values on the dough properties. All of these confirmed that changes in the absolute pH value of sourdough significantly influence sourdough components.

The pH profile may affect the time frame during which the acid influences the constituent ingredients of the dough. The changing pH values during sourdough fermentation period may also afford passage through a range of pH values close to the optimum for various enzymes present in the dough system. It is so-called secondary (indirect) effect of sourdough acidification (Clarke et al., 2004). The activity of proteolytic and amylolytic enzyme present may be influenced to a greater degree by the pH profile of the biological acidification fermentation period in contrast to the rather instantaneous nature of the chemically acidified regime. Optimum activity of these enzymes, which play significant role in changes of dough constituents, achieve optimum activity at pH 4-5 for the proteolytic and pH 3.6 – 6.2 for the amylolytic enzymes (Belitz & Grosh, 1992). Other enzymes that might affect the structural components of the dough the activity of which is pH dependent include peroxidases, catalases, lipoxigenases and polyphenol oxydases (Belitz & Grosh, 1992; Clarke et. al., 2002). Results obtained by the the fundamental rheological tests, baking tests, and farinograms show that activity of some enzymes in the biologically acidified dough led to structural changes in the dough (Corsetti et. al., 2000; Clarke et. al., 2002; Clarke et. al., 2004). Corsetti et. al. (2000) also reported that even limited photolytic degradation of wheat proteins affects the physical properties of gluten, which in turn can have a major effect on bread firmness and staling.