Header Image - Gluten Light

Tag Archives

10 Articles

Importanza delle subunità HMM del glutine (aggiornamento 21-01-2020)

by luciano

Estratto dallo studio: The structure and properties of gluten

“….omissis. Un gruppo di proteine ​​del glutine, le subunità HMM della glutenina, è particolarmente importante nel conferire alti livelli di elasticità (ovvero la resistenza della pasta). Queste proteine ​​sono presenti nei polimeri HMM che sono stabilizzati dai legami disolfuro e sono formano “l’ossatura elastica” del glutine. Tuttavia, le sequenze ripetitive ricche di glutammina che comprendono le parti centrali delle subunità HMM formano anche estese matrici di legami idrogeno tra di loro legati che possono contribuire alle proprietà elastiche attraverso un meccanismo “loop and train*”. L’ingegneria genetica può essere utilizzata per manipolare la quantità e la composizione delle subunità HMM, portando a un aumento della forza dell’impasto o a cambiamenti più drastici nella struttura e nelle proprietà del glutine.

….omissis … Queste proprietà sono generalmente descritte come viscoelasticità, con l’equilibrio tra estensibilità ed elasticità che determina la qualità dell’uso finale. Ad esempio, per la panificazione sono necessari impasti altamente elastici (“forti”) ma impasti più estensibili per preparare torte e biscotti. Omissis … Le proteine ​​del grano determinano le proprietà viscoelastiche dell’impasto, in particolare le proteine ​​di conservazione che formano una rete nell’impasto chiamata glutine (Schofield 1994). Di conseguenza, le proteine ​​del glutine sono state ampiamente studiate per un periodo superiore a 250 anni, al fine di determinare le loro strutture e proprietà e fornire una base per manipolare e migliorare la qualità dell’uso finale.”

*

…omissis. As a result of the formation of a protein matrix, individual cells of wheat flour contain networks of gluten proteins, which are brought together during dough mix ing. The precise changes that occur in the dough during mixing are still not completely understood, but an increase in dough stiffness occurs that is generally considered to result from ‘optimization’ of protein–protein interactions within the gluten network. In molecular terms, this ‘optimization’ may include some exchange of disulphide bonds as mixing in air, oxygen and nitrogen result in different effects on the sulphydryl and disulphide contents of dough (Tsen & Bushuk 1963; Mecham & Knapp 1966).

Glutine ed intestino

by luciano

Digestione di peptidi del glutine nell’intestino crasso e benefici che apporta.

È stato dimostrato che l’eliminazione del glutine dalla dieta influisce sulla composizione della comunità batterica nell’intestino crasso dove il cibo non digerito nell’intestino tenue e potrebbe essere idrolizzato dal metabolismo microbico, generando composti benefici per l’ospite.

“Alimentary protein digestion followed by amino acid and peptide absorption in the small intestinal epithelium is considered an efficient process. Nevertheless, unabsorbed dietary proteins enter the human large intestine as a complex mixture of protein and peptides.53,63 The incomplete assimilation of some dietary proteins in the small intestine has been previously demonstrated, even with proteins that are known to be easily digested (e.g., egg protein).64,65 The high proline content of wheat gluten and related proteins renders these proteins resistant to complete digestion in the small intestine. As a result, many high molecular weight gluten oligopeptides arrive in the lower gastrointestinal tract.66 While gluten peptides pass through the large intestine, proteolytic bacteria could participate in the hydrolysis of these peptides. A recent study from our group has shown that some of the gluten ingested in the diet is not completely digested while passing through the gastrointestinal tract, and is consequently eliminated in feces.

Moreover, it has been shown that the amount of gluten peptides present in feces is proportional to the amount of gluten consumed in the diet. Therefore, several gluten peptides are resistant to both human and bacterial proteases in the gastrointestinal tract.66,67

The large intestine is the natural habitat for a large and dynamic bacterial community. Although the small intestine contains a significant density of living bacteria, the density in the large intestine is much higher. The large intestine has as many as 1011–1012 cells per gram of luminal content that belong to thousands of bacterial taxa. Furthermore, the large intestinal microbiota is extremely complex and performs specific tasks that are beneficial to the host.68–71 Among the important functions that the intestinal microbiota performs for the host are several metabolic functions.72 In contrast to the rapid passage of dietetic components through the small intestine, the transit of the luminal material through the large intestine is considerably slower. The longer transit time in the large intestine has been associated with important bacterial metabolic activity.53 Therefore, undigested food in the upper gut could be hydrolyzed by microbial metabolism in the large intestine, generating beneficial compounds for the host.

The resistance of gluten peptides to pancreatic and brush border enzymes allows large amounts of high molecular weight peptides to enter the lower gastrointestinal tract. Therefore, gluten peptides are available for microbial metabolism in the large intestine and could be important to the composition of the intestinal microbiota. It has been shown that removing gluten from the diet affects the composition of the bacterial community in the large bowel.78,79 De Palma et al.78 observed that healthy subjects who followed a gluten-free diet for 1 month had reduced fecal populations of Lactobacillus and Bifidobacterium, but the population of Enterobacteriae such as E. coli appeared to increase. Similar results were obtained in studies with CD patients. Treated CD patients also showed a reduction in the diversity of Lactobacillus and Bifidobacterium species.80,81Gluten Metabolism in Humans. Alberto Caminero, … Javier Casqueiro, in Wheat and Rice in Disease Prevention and Health, 2014”

Il Glutine e le frazioni “tossiche” (I parte)

by luciano

-la struttura della gliadina e la tossicità di alcune frazioni –
Il glutine è un composto proteico formato dalla prolammina, nota col nome di gliadina nel frumento e responsabile dei principali fenomeni di reazioni avverse, e dalla glutenina presenti principalmente nell’endosperma della cariosside di cereali quali frumento, farro, segale e orzo. Il glutine si forma quando acqua, farina e lievito sono mescolati: gliadina e glutenina si uniscono formando un impasto caratterizzato da viscosità, elasticità e coesione. Pertanto la quantità e il grado d’integrità delle proteine che compongono il glutine presente in una farina sono un importante indice per valutarne la qualità e l’attitudine alla panificazione.
Gliadina e glutenina, pertanto, sono state oggetto di numerosissime ricerche sia in relazione alle proprietà riguardanti le caratteristiche reologiche degli impasti sia riguardo alle reazioni avverse che attivano del sistema immunitario. Sono stati gli studi riguardanti la celiachia che hanno scoperto chi e come causa questa patologia: sono alcuni peptidi (un insieme di aminoacidi) presenti, soprattutto nella gliadina che contengono delle sequenze che sono tossiche, cioè attivano, nei soggetti geneticamente predisposti, la reazione avversa del sistema immunitario. La gliadina, a sua volta, è composta da diverse sub unità e queste contengono in diversa quantità e qualità le frazioni “tossiche”.
Non solo la ricerca di William Hekkins ha messo in luce come anche la forma e la posizione delle molecole della gliadina influenzano non solo le proprietà chimiche e fisiche ma anche la tossicità.
“The gliadin proteins are heterogenous in different regions of the molecule and consequently differ in phisical and chemical properties. About 35% of the gliadin molecule is the alfa helix form, whereas 35% are beta turns(5). The latter are concentrated in the N terminal and C terminal more apolar parts of the gliadin. The remaining part has a random structure. These form have conseguences for the immunogenecity of the different regions in the molecule. Especially beta-turns are immunogenic.” The Toxicity of wheat prolamins William TH. J. M. Hekkens Annales Nestlé 1995 n. 51.
Lo studio ha analizzato anche il meccanismo alla base della tossicità rilevando come “ il passaggio di frammenti di gliadina non digeriti (frammenti più lunghi di 8 aminoacidi) o una minore tolleranza alla gliadina provochi la reazione del sistema immunitario”.
Non è sufficiente, dunque, sapere quanta gliadina è presente in un grano, ma occorre avere lo screening completo delle sue sub unità (qualità, quantità, e, in accordo con lo studio citato anche forma e posizione).
Lo studio sulla “struttura della gliadina” potrebbe in parte, spiegare perché alcuni grani antichi (ad esempio il monococco) pur avendo una quantità di gliadina (e segnatamente alfa gliadina) non inferiore ai grani moderni presenta livelli di tossicità nulli o quasi.
Approfondimenti
Il Glutine e le frazioni “tossiche”