Header Image - Gluten Light

Daily Archives

2 Articles

Maturazione naturale della farina

by luciano

La maturazione naturale della farina è un processo che riguarda gli aspetti biochimici, enzimatici e botanici dei fenomeni che avvengono durante la maturazione naturale degli sfarinati, dopo la macinazione e le implicazioni tecnologiche sul processo della panificazione e richiede tempo. Necessità commerciali hanno sempre più orientato molti operatori del settore ad accelerare questo processo utilizzando additivi. L’argomento è di vitale importanza per la qualità dei prodotti finali ed è per questo motivo che pubblichiamo integralmente un articolo (suddiviso in due parti) della Dott.sa Lauri Simona (tecnologo alimentare). L’articolo è di una straordinaria chiarezza ed evidenzia una profonda conoscenza della materia unita ad una notevole capacità espositiva.

L’importanza della maturazione naturale della farina (I parte)
La maturazione naturale della farina rappresenta realmente un elemento facoltativo, per non dire superfluo? O è forse un fattore chiave, frutto di un secolare processo tecnologico naturale, nonché sinonimo di vera qualità? (I Parte). Pubblicato il: 25/08/2014
Premessa
Parlare di farine non è mai una cosa semplice, soprattutto quando vi sono molteplici punti di vista attraverso i quali è possibile affrontare l’argomento: agronomico, botanico e/o genetico del frumento, reologico, enzimatico, tecnologico, concernente le analisi di processo, legislativo, commerciale, nutrizionale o semplicemente divulgativo. A questa problematica si aggiunga il lessico della trattazione, che molto spesso è basato su vocaboli o troppo tecnici – a quasi esclusivo appannaggio universitario – o eccessivamente semplificati, tali da diffondere banalità o informazioni elementari e pertanto reperibili ovunque.

L’argomento di quest’approfondimento sulla farina di frumento riguarda gli aspetti biochimici, enzimatici e botanici dei fenomeni che avvengono durante la maturazione naturale degli sfarinati, dopo la macinazione e le implicazioni tecnologiche sul processo della panificazione. Si cercherà pertanto di utilizzare un linguaggio il più semplificato possibile, pur mantenendo solide le basi scientifiche e la terminologia tecnica, evitando – quando possibile – dettagliati approfondimenti e rimandando ad opportuni testi, pubblicazioni universitarie, o articoli specifici.

fig.1 – Sezione della Cariosside di Frumento
La maturazione naturale
Per il lavoro che svolgo, mi confronto molto spesso con rappresentanti, tecnici di laboratorio, tecnologi alimentari, operatori commerciali di moltissimi molini ed alcuni di essi (per fortuna pochi!) si stupiscono quando parlo di maturazione naturale della farina. Ciò induce in me non poche perplessità (in tutti i sensi), ricordandomi immediatamente che purtroppo viviamo nell’era dell’artefatto (aromi di sintesi, additivi, ecc.) e questo contribuisce enormemente a rovinare l’immagine delle aziende e del Settore Molitorio più in generale.
Per qualcuno, la maturazione naturale della farina rappresenta un costo nonché un “optional” del quale si può tranquillamente fare a meno, poiché sopperito dall’aggiunta (volontaria) di additivi e/o enzimi, alcuni dei quali fatti passare per coadiuvanti tecnologici e pertanto non dichiarati in etichetta.
Per coloro che invece lavorano con passione e serietà da generazioni, che curano il dettaglio, portando rispetto per il prossimo – soprattutto per il grano – e che amano il proprio mestiere, è scontato che per fare qualità con le farine occorra partire: in primis dalla certezza della provenienza e dalle caratteristiche intrinseche ed estrinseche (agronomica, chimica, fisica, botanica, entomologica, reologica, enzimatica, fertilizzazione del terreno, patologie delle piante, ecc.) dei grani, macinati in purezza o in opportuna miscela tra loro e in secundis proprio dalla maturazione naturale che viene perpetrata da secoli.
Una vecchia canzone recitava così: << ..per fare l’albero ci vuole il seme.. >>; anche per fare la farina occorre il frumento e cioè il seme (la cariosside)! E’ chiaro che per lavorare la farina sia fondamentale conoscerla nei dettagli, per comprenderne i comportamenti reologici, dettati da interazioni chimico-fisiche e biochimiche quali: il Punto Isoelettrico delle proteine, la conformazione nativa, la temperatura di transizione vetrosa, la gelatinizzazione, la denaturazione, le catene polimeriche, la dimerizzazione, ecc. Aspetti, questi ultimi, estremamente complessi e di cui alcuni ancora in fase di studio.
La cariosside di frumento
La struttura anatomica della cariosside (frutto il cui corpo fruttifero è tutt’uno con il seme) di tutti i cereali è abbastanza simile, portando all’identificazione di tre regioni principali rappresentate da: tegumenti esterni, endosperma amilaceo, o mandorla farinosa ed embrione, o germe (fig. 1). Ognuna di queste regioni possiede una composizione chimica differente ed altamente specifica per meglio rispondere alla propria funzione biologica naturale nel seme che, in condizioni opportune, germinerà dando origine a una nuova pianta. La differente composizione percentuale dei nutrienti (amido ed altri carboidrati, proteine, lipidi, cellulosa, emicellulosa, pentosani, sali minerali e vitamine) presenti nelle parti della cariosside, riveste un ruolo fondamentale, non solo da un punto di vista botanico, ma anche tecnologico, durante tutto il processo della macinazione e le lavorazioni successive.
Le conseguenze tecnologiche e fisiche della macinazione
Gli obiettivi della macinazione sono pertanto quelli di: trasformare la cariosside dei cereali (pseudocereali, ecc.) in sfarinati, permettendo di separare l’endosperma dalle parti tegumentali e dal germe, oltre a ridurre le dimensioni della mandorla farinosa (figure 2, 3 e 4).
L’endosperma centrale include la parte amilifera e lo strato aleuronico, che nel corso della macinazione è rimosso dalla crusca. L’endosperma amilifero è il responsabile della produzione di farina bianca nel processo di macinazione del frumento tenero e della semola raffinata nella macinazione del grano duro.
Pertanto, la macinazione a cilindri determina, a grandi linee, la rottura della cariosside, il distacco dell’endosperma amilifero dalla crusca (proveniente dal pericarpo), dallo strato aleuronico e dal germe, nonché la riduzione della granulometria dell’endosperma a dimensioni medie di circa 100μm per la farina di frumento tenero. La conseguenza tecnologica e fisica del processo di macinazione consiste pertanto in una serie di differenti passaggi atti a garantire la conversione dell’endosperma in farina, la separazione dei tegumenti e dell’embrione, la rottura di una parte dei granuli d’amido e l’ottenimento di uno sfarinato con composizione chimica diversa da quella della cariosside di partenza.

(fig.3 – Taglia Covoni)
(fig.2 – Mulino ad Acqua)
(fig.4 – Macina Manuale a Pietra Naturale)

Chiaramente, maggiore è il grado di raffinazione degli sfarinati, minore sarà il valore nutrizionale delle farine e più elevate saranno le proporzioni di cariosside eliminate con i sottoprodotti; al contrario, queste ultime diminuiranno con l’innalzamento del tasso di abburattamento.

Partendo pertanto dal concetto basilare che la cariosside è un seme (organismo vivente vegetale) e in condizioni opportune, intese come la presenza di ossigeno, lo stato igrometrico dell’aria, il livello d’idratazione interna, la temperatura interna ed esterna, ecc., può avviare il processo della germinazione in senso stretto.
La germinazione e gli effetti sulle caratteristiche chimico-fisiche
Quando germoglia, il grano respira con sempre maggiore intensità, emettendo una forte quantità di calore e di umidità. La germinazione del seme inizia con l’assorbimento di acqua che fa gonfiare l’embrione fino a lacerarne il rivestimento; spunta così la radichetta, che si dirige verso il basso ed è seguita immediatamente da altre due radichette e dal germoglio, il quale invece si orienta verso l’alto. Man mano che si sviluppa in altezza, emette le foglie.

L’utilizzazione, nel corso della germinazione delle riserve accumulate sia nell’endosperma amilaceo sia nei cotiledoni, rappresenta la fase più importante del periodo di crescita della plantula, ma soprattutto di nutrizione eterotrofa dell’embrione che terminerà quando la pianta in autonomia, sarà in grado di compiere sia la fotosintesi clorofilliana sia la respirazione.
I macronutrienti presenti all’interno del seme hanno quindi il compito di sostenere la crescita dell’embrione; la loro funzione sarà svolta solo se saranno idrolizzati nei componenti più semplici da un pool enzimatico naturalmente presente nella cariosside, localizzato per lo più nell’embrione del seme.
Gli enzimi e la loro funzione nella farina
Gli enzimi sono proteine o di tipo idrolitico (amilasi, proteasi, lipasi), o ossidativo (lipossigenasi, perossidasi). Sono strutture che svolgono funzione di “catalizzatori biologici”, cioè aumentano la velocità delle reazioni biochimiche e si ritrovano poi inalterati alla fine delle reazioni stesse. Si può quindi definire un enzima come un agente catalitico organico, prodotto da cellule viventi, in grado di idrolizzare macromolecole complesse come amido, proteine, lipidi, cellulosa, pentosani, ecc., nelle singole unità costituenti, al fine di sostenere la crescita e lo sviluppo dell’embrione. Tale azione (la macinazione della cariosside avviene in assenza di germinazione) proseguirà comunque nello sfarinato e rappresenterà l’aspetto principale della fase della maturazione naturale della farina tal quale.

Qualsiasi sfarinato, immediatamente dopo la sua produzione, con il passare del tempo cambia le proprie caratteristiche reologiche e la qualità può migliorare e/o peggiorare in base al tempo e alle condizioni di stoccaggio: questa fase si chiama “maturazione della farina”. Nella seconda parte di questo articolo analizzeremo più nel dettaglio il processo della maturazione naturale della farina, evidenziando come purtroppo per alcune aziende quest’ultimo rappresenti solamente un optional antieconomico e pertanto da sostituire con l’aggiunta ad hoc di additivi volontari e/o coadiuvanti tecnologici.”
Simona Lauri
Panificatore artigiano, consulente tecnico, perito, docente, maestro e formatore di Arte Bianca (pane tradizionale italiano, pizza classica, pizza in pala, prodotti innovativi, prodotti da forno, grandi lievitati, prodotti tradizionali, soggetti artistici, etc.) per Professionisti, Associazioni, Enti Nazionali ed Internazionali, Privati, Aziende, Fiere e Manifestazioni Italiane ed Estere. Giudice di gara in diverse Competizioni Nazionali e Mondiali. Iscritta all’Ordine dei Tecnologi Alimentari Regione Lombardia e Liguria OTA.
All’attivo numerose pubblicazioni scientifiche su portali, testate giornalistiche del settore. Già Docente universitario di microbiologia, relatore in convegni tecnici del settore, formatore ed esperto con pluriennale esperienza pratica.

La digestione del glutine (perché è difficile da digerire)

by luciano

Gliadina e Glutenina

Gliadina e Glutenina sono le proteine del grano responsabili della formazione del glutine e sono composte da lunghe catene di aminoacidi chiamate peptidi (1).

Digestione della gliadina e glutenina
L’intestino tenue è in grado di assimilare, attraverso l’epitelio intestinale, solo i singoli aminoacidi o piccole frazioni di peptidi con pochissimi aminoacidi (2). Sono gli enzimi digestivi gastro-intestinali che riducono “spezzettano” i peptidi riducendoli i singoli aminoacidi o in piccoli frammenti (3; 4), i perptidi piu grandi, in individui sani, verranno eliminati con le feci. I frammenti più grandi raggiungono l’intestino e possono provocare un aumento delle infiammazioni intestinali o della permeabilità intestinale esistente. Alcune di queste frazioni sono anche responsabili dell’attivazione avversa del sistema immunitario provocando la celiachia in taluni soggetti (5).


Alcuni peptidi sono altamente resistenti, difficili da “spezzettare” (6) rendendo i prodotti realizzati con i grani che li contengono meno digeribili. I grani, però, non sono tutti uguali. Studi specifici sono stati fatti per identificare, in campioni di grani, quali “frazioni” permangono dopo la digestione (7; 8). La quantificazione quali-quantitativa permette di poter selezionale “grani” più digeribili.
Note:
1 – Una catena di più amminoacidi legati tra loro è indicata con il nome di peptide o polipeptide o di oligopeptide. Gli aminoacidi (o amminoacidi) sono l’unità strutturale primaria delle proteine. Gli aminoacidi sono in pratica i “mattoncini”che, uniti tra loro formano una lunga sequenza che dà origine ad una proteina.
2 –E’ comunemente accettato che il massimo numero assimilabile è pari a 8 aminoacidi.
3- La digestione della gliadina e della glutenina è legata alla lunghezza dei polipeptidi che le compongono, alla forza dei legami esistenti tra gli aminoacidi e tra i polipeptidi, alla sequenza/natura dei singoli aminoacidi.
4 – La digestione delle proteine comincia nello stomaco, dove l’acido cloridrico crea l’ambiente adatto per l’enzima pepsina che esegue i primi “tagli”. Il grosso del lavoro comincia però più avanti, nell’intestino. Il pancreas produce molti enzimi, il più importante dei quali è la tripsina, che riduce le catene proteiche in frammenti composti da un numero ridotto di amminoacidi. Poi, altri enzimi, sulla superficie delle cellule intestinali e all’interno delle cellule, operano ulteriore riduzione in frammenti piccolissimi o/e singoli aminoacidi che vengono assorbiti a partire dal duodeno per tutto il digiuno e l’ileo attraverso i villi intestinali per essere, poi assimilati per la sintesi di nuove proteine e non solo. Dopo essere stati assorbiti raggiungeranno il fegato dove possono:
4a – essere utilizzati come tali per svolgere funzioni particolari (intervengono nelle risposta immunitaria, nella sintesi di ormoni e vitamine, nella trasmissione degli impulsi nervosi, nella produzione di energia e come catalizzatori in moltissimi processi metabolici)
4b – partecipare alla sintesi proteica, un processo inverso a quello digestivo che ha lo scopo di fornire all’organismo i materiali per la crescita, il mantenimento e la ricostruzione delle strutture cellulari
4c – se presenti in eccesso vengono utilizzati a scopi energetici (gluconeogenesi) o convertiti in grasso di deposito.
5 – In alcune persone alcuni specifici frammenti provenienti principalmente dalle α-gliadine e secondariamente dalle HMW-GS innescano la celiachia (Gilissen et al., 2014). Questi frammenti, sono peptidi costituiti da una sequenza di nove amminoacidi che provengono dalle proteine ricche in prolina e glutammina (prolamine), che sono resistenti alla digestione (Bethune and Khosla, 2008). Queste frazioni sono, generalmente, anche le più resistenti alla digestione gastro-intestinale. Pertanto, è stato ipotizzato che le gliadine pur difficilmente idrolizzabili dagli enzimi gastro-enterici, rimangano immunologicamente inattive nella maggior parte delle persone [A].
6 – Altro fattore che influenza la digeribilità di queste proteine è costituita dalla tipologia degli aminoacidi costituenti: l’alto contenuto di prolina e glutamina rende queste proteine resistenti alla completa digestione nell’intestino tenue [B]. Un peptide noto per l’alta presenza di prolina e glutammina è quello denominato 33mer presente nei grani teneri, farro spelta e grani duri è particolarmente resistente alla digestione gastro-intestinale. Questa frazione, che tra l’altro, è quella che più attiva la risposta avversa del sistema immunitario, è presente in varia misura nei grani: da 90,9 a 602,6 μg / g di farina. Non è stata, invece, rilevata la sua presenza nel grano monococco e nel grano duro [C].
7 – Summary of the GD-resistant peptides identified at the end of the duodenal phase and counting of the peptides encrypting full length epitopes relevant for celiac disease (CD) and wheat allergy: see table 3 in A Comprehensive Peptidomic Approach to Characterize the Protein Profile of Selected Durum Wheat Genotypes: Implication for Coeliac Disease and Wheat Allergy. Rosa Pilolli, Gianfranco Mamone et al. 2019.

8 – Ancestral Wheat Types Release Fewer Celiac Disease Related T Cell Epitopes than Common Wheat upon Ex Vivo Human Gastrointestinal Digestion. Tora Asledottir, Gianluca Picariello, Gianfranco Mamone et al. 2020.

A – “Alimentary protein digestion followed by amino acid and peptide absorption in the small intestinal epithelium is considered an efficient process. Nevertheless, unabsorbed dietary proteins enter the human large intestine as a complex mixture of protein and peptides.53,63 The incomplete assimilation of some dietary proteins in the small intestine has been previously demonstrated, even with proteins that are known to be easily digested (e.g., egg protein).64,65 The high proline content of wheat gluten and related proteins renders these proteins resistant to complete digestion in the small intestine. As a result, many high molecular weight gluten oligopeptides arrive in the lower gastrointestinal tract.66 While gluten peptides pass through the large intestine, proteolytic bacteria could participate in the hydrolysis of these peptides. 81Gluten Metabolism in Humans. Alberto Caminero, … Javier Casqueiro, in Wheat and Rice in Disease Prevention and Health, 2014”
B – “Prolamins (gliadins and glutenins) have a high content of proline (15%) and glutamine (35%) and, depending on the cereal, they have been termed secalin for rye, hordein for barley, avenin for oats, and gliadin for wheat. The high concentration of these amino acids, especially proline, limits proteolysis by gastrointestinal enzymes, preventing the complete degradation by human gastric and pancreatic enzymes. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and
Product Quality . Nina G. Heredia-Sandoval , Maribel Y. Valencia-Tapia , Ana M. Calderón de la Barca and Alma R. Islas-Rubio . Received: 1 May 2016; Accepted: 27 August 2016; Published: 30 August 2016.”
C – Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours 2017. Kathrin Schalk, Christina Lang, Herbert Wieser, Peter Koehler & Katharina Anne Scherf .