Header Image - Gluten Light

luciano

Potenziale genetico e condizioni di processo nella determinazione della forza del glutine, della digeribilità e dell’immunogenicità

by luciano

Premessa
Il glutine è il complesso proteico che si forma quando le proteine di riserva del frumento — principalmente gliadine e glutenine — vengono idratate e sottoposte a lavorazione meccanica. Durante questo processo esse si organizzano in una rete tridimensionale continua, responsabile delle proprietà viscoelastiche dell’impasto.
La forza del glutine non rappresenta una proprietà intrinseca e immutabile delle singole proteine del frumento, ma è una caratteristica emergente dell’organizzazione supramolecolare che si sviluppa quando le proteine di riserva vengono idratate e sottoposte a energia meccanica durante l’impasto (Shewry & Tatham, 1997; Wieser, 2023). La qualità del glutine è pertanto il risultato dell’interazione tra composizione molecolare di partenza e trasformazioni strutturali indotte dal processo.
Nel chicco, le gliadine sono costituite prevalentemente da proteine monomeriche stabilizzate da legami disolfuro intramolecolari, mentre le glutenine sono presenti anche in forma di polimeri stabilizzati da legami disolfuro intermolecolari, che costituiscono la base strutturale dell’elasticità del glutine (Shewry & Tatham, 1997; Wieser, 2023). I ponti disolfuro rappresentano dunque i principali cross-link covalenti responsabili della formazione di una rete proteica continua.
È fondamentale distinguere tra forza del singolo legame e capacità di formare una rete estesa di legami. Dal punto di vista chimico, l’energia di legame di un ponte disolfuro è sostanzialmente costante; le differenze tra varietà non derivano da legami “più forti”, bensì da variazioni nel numero, nella posizione e nell’accessibilità dei residui di cisteina, nonché dalla composizione in subunità di glutenina ad alto e basso peso molecolare (Wieser, 2023). Tali caratteristiche definiscono il potenziale genetico di cross-linking, ossia la predisposizione intrinseca delle proteine a partecipare alla formazione di legami intermolecolari.
L’esistenza e l’importanza strutturale dei ponti disolfuro nel glutine sono state confermate mediante identificazione diretta delle connessioni S–S attraverso spettrometria di massa, che ha consentito di mappare specifici legami intra- e intermolecolari nelle proteine del glutine (Lutz et al., 2012). Queste evidenze supportano l’idea che il network del glutine sia stabilizzato da una fitta rete di connessioni covalenti.
Durante l’impasto, il potenziale genetico viene convertito in struttura reale attraverso processi dinamici di rottura e riformazione dei legami disolfuro, principalmente tramite reazioni di scambio tiolo–disolfuro (Lagrain et al., 2010). Di conseguenza, la rete del glutine non coincide semplicemente con i polimeri presenti nel chicco, ma rappresenta una struttura riorganizzata che si sviluppa in funzione di idratazione, energia meccanica, temperatura e condizioni ossido-riduttive.
La composizione proteica influisce anche sull’architettura dei polimeri che si formano. È stato dimostrato che alcune gliadine contenenti un numero dispari di residui di cisteina possono essere incorporate nelle frazioni polimeriche e agire come elementi che limitano o modulano l’estensione delle catene (Vensel et al., 2014). Ciò evidenzia che la qualità del network dipende non solo dalla quantità di proteine polimeriche, ma anche dalla loro natura molecolare.
Parallelamente, studi classici hanno mostrato che i polimeri di glutenina subiscono fenomeni di depolimerizzazione e ripolimerizzazione durante la lavorazione dell’impasto, e che il contenuto di glutenin macropolymer (GMP) è strettamente correlato alla forza dell’impasto e del glutine (Weegels et al., 1996). Questo comportamento dinamico sottolinea il ruolo determinante delle condizioni di processo nel modulare l’espressione del potenziale genetico.

Implicazioni strutturali sulla digeribilità
La forza del glutine e la struttura del network proteico non influenzano soltanto le proprietà reologiche dell’impasto, ma anche l’accessibilità delle proteine e degli amidi agli enzimi digestivi. Studi recenti mostrano che glutini caratterizzati da una rete più compatta ed estesa sono associati a una minore velocità di digestione dell’amido e a una differente cinetica di degradazione proteica, suggerendo che la matrice del glutine funzioni come barriera fisica all’azione enzimatica (Zou et al., 2022).
A livello molecolare, le proteine del glutine sono ricche di prolina e glutammina, una composizione che conferisce intrinseca resistenza alle principali proteasi gastrointestinali. Di conseguenza, la digestione del glutine porta frequentemente alla formazione di peptidi relativamente lunghi e difficilmente degradabili (Di Stasio et al., 2025).
Tra questi, frammenti derivati dalle α-gliadine — come il noto peptide 33-mer — mostrano un’elevata resistenza alla proteolisi e contengono epitopi riconosciuti dal sistema immunitario nei soggetti affetti da celiachia (Hernández-Figueroa et al., 2025). La probabilità di formazione e persistenza di tali peptidi è influenzata sia dal genotipo del frumento sia dall’organizzazione strutturale del glutine.

Ruolo del processo nella modulazione dei peptidi
Le condizioni di processo, in particolare la fermentazione, possono modificare significativamente la struttura del glutine e il profilo dei peptidi generati durante la digestione. La fermentazione con lievito madre, grazie all’attività combinata di enzimi endogeni della farina e proteasi microbiche, è in grado di parzialmente idrolizzare le proteine del glutine e alterare la distribuzione dei peptidi immunogenici rilasciati (Ogilvie et al., 2021).
Analisi peptidomiche su pani sottoposti a digestione in vitro mostrano una notevole diversità di peptidi, correlata al genotipo del grano, alle condizioni agronomiche e alle tecnologie di trasformazione (Lavoignat et al., 2024). Ciò conferma che il profilo peptidico finale non è determinato esclusivamente dalla sequenza proteica, ma anche dall’architettura del network e dalla sua storia di processo.
L’utilizzo di protocolli di digestione semi-dinamici standardizzati (come INFOGEST) consente di simulare in modo realistico le fasi orale, gastrica e intestinale, permettendo di quantificare la formazione di peptidi resistenti e potenzialmente tossici (Freitas et al., 2022). Tecniche avanzate di cromatografia liquida accoppiata a spettrometria di massa consentono la quantificazione assoluta di tali frammenti e la valutazione comparativa di varietà e processi.
In parallelo, l’impiego di enzimi supplementari o di microrganismi selezionati è stato esplorato come strategia per incrementare la degradazione dei peptidi di glutine particolarmente resistenti, dimostrando che interventi mirati possono ridurre significativamente la concentrazione di frammenti problematici (Dunaevsky et al., 2021).

Visione integrata
Nel loro insieme, queste evidenze conducono a una visione integrata:
La composizione molecolare di partenza definisce il limite superiore della connettività possibile del glutine.
Il processo di impasto e fermentazione determina quanto di questo potenziale viene effettivamente espresso.
La struttura risultante del network influenza non solo la forza tecnologica, ma anche la digeribilità e il profilo dei peptidi rilasciati.

In sintesi:
✔ Conta soprattutto la rete che si forma nel glutine
✔ Ma questa rete è limitata da ciò che esiste all’origine
✔ E la rete risultante condiziona anche il destino digestivo delle proteine

Approfondimenti tematici 

Cibo Non Digerito → Infiammazione Intestinale di Basso Grado → Aumento della Permeabilità Intestinale

by luciano

(articolo correlato n. 3 di Sindrome dell’intestino irritabile (IBS) e permeabilità intestinale)

Introduzione

La letteratura scientifica più recente suggerisce che la presenza di cibo non completamente digerito nel lume intestinale possa contribuire, in specifici contesti, a processi di infiammazione cronica di basso grado e a un aumento della permeabilità intestinale.
Questa relazione emerge in modo particolare dalla review di Riccio e Rossano (2019), che propone come residui alimentari indigeriti e microbiota intestinale possano cooperare nella patogenesi di condizioni infiammatorie sistemiche, incluse quelle a possibile espressione neurologica. In tale modello, la perdita di integrità della barriera intestinale consente il passaggio di molecole luminali – frammenti di cibo, peptidi, endotossine e componenti microbiche – verso il compartimento interno, favorendo l’attivazione immunitaria.
In questa prospettiva, la digestione non rappresenta soltanto un processo nutrizionale, ma anche un meccanismo di difesa biologica.

Il concetto di “non-self” alimentare
Il cibo, prima di essere completamente digerito, mantiene una identità biologica distinta dall’organismo ospite.
Secondo Riccio e Rossano:
Il cibo integro o parzialmente digerito è biologicamente percepito come “non-self”
Solo dopo la completa scomposizione in molecole semplici (aminoacidi, monosaccaridi, acidi grassi) esso diventa “self”
La barriera intestinale ha quindi il compito cruciale di impedire il passaggio sistemico di materiale ancora strutturalmente complesso.
Quando questo sistema di contenimento si indebolisce, frammenti alimentari parzialmente digeriti possono attraversare l’epitelio e contribuire a:
Infiammazione intestinale
Attivazione immunitaria cronica
Alterazioni del microbiota
Potenziali effetti sistemici

Digestione gastrica come primo livello di protezione
La digestione gastrica costituisce il primo grande filtro contro il carico antigenico alimentare.
1. Frammentazione proteica
L’ambiente acido dello stomaco:
Denatura le proteine
Attiva la pepsina
Produce peptidi più piccoli e gestibili
Quanto più la proteina viene idrolizzata precocemente, tanto minore sarà la quantità di frammenti complessi che raggiungono l’intestino tenue.
Questo è rilevante perché:
Le macromolecole proteiche sono più immunogeniche
I peptidi di grandi dimensioni possono interagire con la mucosa
Un eccesso di residui proteici aumenta il carico digestivo intestinale
2. Supporto alla cascata enzimatica
Una corretta acidità gastrica favorisce l’attivazione efficiente delle proteasi pancreatiche (tripsina, chimotripsina, elastasi, carboxipeptidasi).
Se la digestione gastrica è inefficiente:
L’attività enzimatica a valle risulta ridotta
Aumenta la probabilità di residui proteici non completamente degradati
Lo stomaco agisce quindi come filtro meccanico e chimico che riduce l’esposizione della mucosa intestinale a molecole potenzialmente immunogeniche.

Digestione incompleta e permeabilità intestinale
Quando quantità maggiori di peptidi complessi raggiungono l’intestino:
Aumenta l’interazione con l’epitelio
In presenza di barriera indebolita, cresce la probabilità di traslocazione
Si favorisce l’attivazione immunitaria locale
Nei modelli di “leaky gut”, ciò è associato a:
Alterazione delle tight junctions
Aumento della permeabilità paracellulare
Passaggio di peptidi, endotossine e antigeni
Ne consegue un possibile circolo vizioso:
Digestione inefficiente → maggiore carico antigenico → stress mucosale → permeabilità ↑ → infiammazione ↑

Il caso particolare del glutine
Il glutine rappresenta un esempio ben studiato di proteina alimentare parzialmente digeribile.
Le review di Cenni et al. (2023) e altri studi mostrano che:
Il glutine è ricco di prolina e glutammina
La digestione umana genera peptidi resistenti
Alcuni di questi peptidi possono alterare le tight junctions tramite zonulina
In soggetti predisposti (celiachia, sensibilità al glutine non celiaca):
I peptidi di glutine aumentano la permeabilità intestinale
Facilitano la traslocazione batterica
Attivano risposte immunitarie mucosali
È importante sottolineare che:
L’apparato digerente umano possiede proteasi capaci di degradare molti peptidi del glutine
Tuttavia, alcuni frammenti altamente immunogenici possono persistere
Pertanto, il glutine non è universalmente patologico, ma può diventare clinicamente rilevante in contesti di vulnerabilità.

Intestino irritabile, permeabilità intestinale e infiammazione cronica di basso grado — Review scientifica

by luciano

(articolo correlato n. 2 di Sindrome dell’intestino irritabile (IBS) e permeabilità intestinale)
1. Introduzione
La Sindrome dell’Intestino Irritabile (IBS) è un disturbo funzionale cronico dell’apparato gastrointestinale caratterizzato da dolore addominale e alterazioni dell’alvo, in assenza di lesioni organiche evidenti. È considerata un disturbo dell’asse intestino-cervello (DGBI) e presenta fenotipi clinici eterogenei.

2. Permeabilità intestinale e IBS: evidenze scientifiche
2.1 Review di studi clinici sulla permeabilità
“Intestinal barrier dysfunction in irritable bowel syndrome: a systematic review”
Hanning et al. (2021) — Revisione di 66 studi sul ruolo della barriera intestinale in IBS.
Sintesi: aumento della permeabilità è osservato in una parte significativa dei pazienti, soprattutto nei sottotipi con diarrea (IBS-D) e post-infective (PI-IBS), mentre è meno frequente in IBS-C e quasi assente in IBS-M. L’aumento della permeabilità è stato anche associato alla severità dei sintomi. (PubMed)

2.2 Correlazioni fra permeabilità e fattori clinici
Studi antropometrici e test di challenge indicano che permeabilità ↑ si associa spesso a:
alterazioni delle proteine delle tight junction (es. occludina, ZO-1)
ipersensibilità viscerale
marcatori infiammatori locali e sistemici
(evidenziato anche in studi review su IBS e altri modelli gastrointestinali) (Springer Nature)

3. Permeabilità intestinale e infiammazione cronica di basso grado
3.1 Concetto generale e meccanismi proposti
“Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review”
Di Vincenzo et al. (2023) — Concetto di barriera intestinale dinamica integrata con microbiota, nutrienti e sistema immunitario.
Sintesi: la permeabilità “leaky gut” può facilitare l’interazione di antigeni luminali con il sistema immunitario, con conseguente attivazione pro-infiammatoria. (MedNews Care)

3.2 Interazione tra infiammazione e barriera
“Intestinal permeability – a new target for disease prevention and therapy”
BMC Gastroenterology — Revisione che sottolinea come la disfunzione della barriera sia associata a infiammazione di basso grado, sensibilità viscerale e sintomatologia IBS.
Sintesi: l’infiammazione locale può contribuire alla degradazione delle proteine che mantengono l’integrità delle giunzioni strette, facilitando così un ciclo di perpetuazione di permeabilità e infiammazione. (SpringerLink)

3.3 Bibliometria e trend di ricerca
“Mapping research trends on intestinal permeability in IBS …”
Analisi bibliometrica recente — Evidenzia crescita degli studi su microbiota, dieta, permeabilità e infiammazione in IBS.
Sintesi: l’interazione fra barriera intestinale, microbioma e fattori nutrizionali/ambientali è uno dei temi emergenti e più studiati. (PubMed)

4. Infiammazione di basso grado in IBS e sue relazioni con la permeabilità
4.1 Markers infiammatori in IBS
Anteprima di meta-analisi (Digestive Diseases and Sciences, 2025)
Review con meta-analisi su infiammazione e microbioma in IBS
Sintesi: pro-infiammatori come IL-6 e TNF-α risultano frequentemente elevati nei pazienti IBS, insieme a una disbiosi intestinale, suggerendo un ruolo di attivazione immune cronica. (Springer Nature)

4.2 Relazione tra infiammazione e permeabilità
“Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation?”
Revista PubMed — Analizza dati clinici su permeabilità e infiammazione in diverse condizioni, inclusa IBS.
Sintesi: benché la permeabilità ↑ sia associata a marcatori infiammatori in alcune malattie, non è dimostrato un rapporto causale obbligatorio: la permeabilità può associarsi all’infiammazione, ma non sempre la genera. (PubMed)

5. Sintesi: IBS è multifattoriale — permeabilità non è obbligatoria
La letteratura concorda su questi punti principali:
1. Molti pazienti IBS mostrano aumentata permeabilità, soprattutto in IBS-D e PI-IBS; tuttavia, una larga parte non la presenta. (PubMed)
2. L’infiammazione cronica di basso grado è frequente in IBS, ma non è sempre accompagnata da aumentata permeabilità e non vi è una relazione unidirezionale certa tra i due fenomeni. (PubMed)
3. L’infiammazione può contribuire alla disfunzione di barriera, ma esistono casi documentati nei quali IBS simile a quadro clinico è presente con permeabilità normale. (SpringerLink)
Modello di consenso emergente:
La permeabilità intestinale agisce come amplificatore patogenetico in alcuni sottogruppi di IBS, in associazione con microbiota, dieta, stress e sistema immunitario, ma non è un prerequisito universale della condizione.

6. Esempi di studi rilevanti (con sintesi rapida)
Hanning et al., 2021 — Systematic review IBS/barriera
Prevalenza di permeabilità aumentata in IBS-D e PI-IBS; minormente in IBS-C. (PubMed)
Di Vincenzo et al., 2023 — Narrative review microbiota–permeabilità–infiammazione
Collegamenti meccanicistici tra microbiota, immunità, barriera e sintomi. (MedNews Care)
Digestive Diseases and Sciences, 2025 — Inflammation & microbiome meta-analysis
Conferma elevazione di alcuni marker pro-infiammatori in IBS. (Springer Nature)
?MC Gastroenterology review — Permeabilità e sensazione viscerale
Supporta associazione tra perdita di barriera, infiammazione lieve e sintomi IBS. (SpringerLink)
Bibliometric trend analysis — Trend di ricerca su IBS/permeabilità
Evidenzia focus crescente su modulatori ambientali e nutrizionali della permeabilità. (PubMed)

7. Conclusioni concettuali
IBS è multifattoriale, e il meccanismo fisiopatologico non può essere ridotto a un singolo “difetto di barriera”.
Permeabilità↑ e infiammazione low-grade possono concorrere, ma non sempre lo fanno.
La presenza o assenza di permeabilità alterata dipende dal fenotipo clinico, microbiota, fattori immunitari, dieta, e stress psicobiologico.
L’approccio clinico e diagnostico deve considerare biomarker, microbiota e modelli di interazione del sistema immunitario, non solo la barriera epiteliale.

Grano monococco: perchè è cosi importante

by luciano

Riassunto delle principali caratteristiche del grano monococco che gli conferiscono grande potenzialità per essere utilizzato per la preparazione di prodotti da forno salati ma anche dolci per le persone che:
a – sono geneticamente predisposte per la celiachia (1) (2) (3) (4) (5),
b – debbono tenere sotto controllo l’indice glicemico (6),
c- sono sensibili al glutine non celiache, reintroducono il glutine dopo la sua esclusione (7),
d – hanno difficoltà con la digestione del glutine (8).
e – sono sensibili alle ATI -amylase trypsina inibitors-. (9)
Da sottolineare, anche, le elevate qualità nutrizionali del grano monococco (10) (11).
(1) ………..omissis. “Conclusions: Our data show that the monococcum lines Monlis and ID331 activate the CD T cell response and suggest that these lines are toxic for celiac patients. However, ID331 is likely to be less effective in inducing CD because of its inability to activate the innate immune pathways”. Immunogenicity of monococcum wheat in celiac patients. Carmen Gianfrani et altri. Am J Clin Nutr 2012;96:1339–45.

(2) ………omissis. “D’altra parte, tenuto conto che l’incidenza e la gravità della celiachia dipende dalla quantità e dalla nocività delle prolamine e che alcuni genotipi di grano monococco hanno una elevata qualità panificatoria accoppiata con assenza di citotossicità e ridotta immunogenicità, è atteso che l’uso delle farine di monococco nella dieta della popolazione generale, all’interno della quale si trova una elevata percentuale di individui predisposti geneticamente alla celiachia ma non ancora celiaci, possa contribuire a contenere la diffusione di questa forma di intolleranza alimentare. Ciò lascia pensare che il grano monococco, riportato recentemente in coltivazione in Italia dai ricercatori del Consiglio per la Ricerca e la sperimentazione in Agricoltura (CRA) di Roma e San Angelo Lodigiano, potrà svolgere un ruolo importante nella prevenzione della celiachia, sia direttamente sotto forma di pane e pasta sia indirettamente come specie modello per lo studio del ruolo dell’immunità innata nell’insorgenza della celiachia”. Le nuove frontiere delle tecnologie alimentari e la celiachia Norberto Pogna, Laura Gazza (2013).

(3)-Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: Implication for celiac disease
Carmen Gianfrani, Alessandra Camarca, Giuseppe Mazzarella, Luigia Di Stasio, Nicola Giardullo, Pasquale Ferranti, Gianluca Picariello, Vera Rotondi Aufiero, Stefania Picascia, Riccardo Troncone, Norberto Pogna, Salvatore Auricchio
and Gianfranco Mamone. Mol. Nutr. Food Res. 2015, 00, 1–11
Scope: The ancient diploid Triticum monococcum is of special interest as a candidate low-toxic wheat species for celiac disease patients. Here, we investigated how an in vitro gastro-intestinal digestion, affected the immune toxic properties of gliadin from diploid compared to hexaploid wheat.

Method and results: Gliadins from Triticum monococcum, and Triticum aestivum cultivars were digested using either a partial proteolysis with pepsin-chymotrypsin, or an extensive degradation that used gastrointestinal enzymes including the brush border membrane enzymes. The immune stimulatory properties of the digested samples were investigated on T-cell lines and jejunal biopsies from celiac disease patients. The T-cell response profile to the Triticum mono coccum gliadin was comparable to that obtained with Triticum aestivum gliadin after the partial pepsin-chymotrypsin digestion. In contrast, the extensive gastrointestinal hydrolysis drastically reduced the immune stimulatory properties of Triticum monococcum gliadin. MS-based analy- sis showed that several Triticum monococcum peptides, including known T-cell epitopes, were degraded during the gastrointestinal treatment, whereas many of Triticum aestivum gliadin survived the gastrointestinal digestion.
Conclusion: he pattern of Triticum monococcum gliadin proteins is sufficiently different from those of common hexaploid wheat to determine a lower toxicity in celiac disease patients following in vitro simulation of human digestion.

(4) …….omissis. “Abstract. A growing interest in developing new strategies for preventing coeliac disease has motivated efforts to identify cereals with null or reduced toxicity. In the current study, we investigate the biological effects of ID331 Triticum monococcum gliadin-derived peptides in human Caco-2 intestinal epithelial cells. Triticum aestivum gliadin derived peptides were employed as a positive control. The effects on epithelial permeability, zonulin release, viability, and cytoskeleton reorganization were investigated. Our findings confirmed that ID331 gliadin did not enhance permeability and did not induce zonulin release, cytotoxicity or cytoskeleton reorganization of Caco-2 cell monolayers. We also demonstrated that ID331 ω-gliadin and its derived peptide ω(105–123) exerted a protective action, mitigating the injury of Triticum aestivum gliadin on cell viability and cytoskeleton reorganization. These results may represent a new opportunity for the future development of innovative strategies to reduce gluten toxicity in the diet of patients with gluten intolerance”. Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium. Giuseppe Jacomino et altri 2016.

(5)………omissis. “Scientific research has several times supported and encouraged the use of grains with low toxicity in the prevention of celiac disease; in the research we are now presenting, some grains have been studied highlighting their profile regarding both the presence of peptides resistant to gastro-intestinal digestion and, among these, those containing the “toxic” fraction (table 3) “ ….omissis Even if none of them can be considered safe for CD patients, grain with reduced amount of major T-cell stimulatory epitopes may help in the prevention of CD, since previous studies demonstrated that the amount and duration to gluten exposure are strictly linked to the initiation of this pathology.” (A Comprehensive Peptidomic Approach to Characterize the Protein Profile of Selected Durum Wheat Genotypes: Implication for Coeliac Disease and Wheat Allergy. Rosa Pilolli , Agata Gadaleta, Luigia Di Stasio , Antonella Lamonaca, Elisabetta De Angelis , Domenica Nigro , Maria De Angelis , Gianfranco Mamone and Linda Monac. Published: 1 October 2019).
(6) ….omissis. Non tutto l’amido è rapidamente idrolizzato durante la digestione, la frazione che resiste alla digestione e all’assorbimento nell’intestino tenue umano è definita “amido resistente” e ha effetti fisiologici comparabili a quelli della fibra alimentare. Il grano monoccoco però ha un basso contenuto (0,2%) in “amido resistente” se confrontato con il grano tenero(0,4- 0,8%) (Abdel-Aal et al. 2008).

(7) ….omissis. “Once the diagnosis of NCGS is reasonably reached, the management and follow-up of patients is completely obscure. A logical approach is to undertake a gluten-free dietary regimen for a limited period (e.g., six months), followed by the gradual reintroduction of gluten. During the gluten-free diet, the ingestion of prolamine peptide (gliadin)-derived from wheat, rye, barley, oats, bulgur, and hybrids of these cereal grains-should be avoided. Rice, corn, and potatoes have been the typical substitutes, but nowadays other different cereals and pseudocereals, such as amaranth, buckwheat, manioc, fonio, teff, millet, quinoa, and sorghum, can be used. After some period on a gluten-free diet, the reintroduction of gluten can start with cereals of low gluten content (e.g., oats). In addition, einkorn farro (Triticum monococcum) can be used, having no direct in vitro or ex vivo toxicity and low (7%) gluten content[41]”. (Non-celiac gluten sensitivity: Time for sifting the grain. Luca Elli, Leda Roncoroni, and Maria Teresa Bardella. Copyright ©The Author(s) 2015. Published by Baishideng Publishing Group Inc.

Sindrome dell’Intestino Irritabile: perché infiammazione e “leaky gut” non sono la stessa cosa

by luciano

(articolo correlato n. 1 di Sindrome dell’intestino irritabile (IBS) e permeabilità intestinale)
Negli ultimi anni la sindrome dell’intestino irritabile (IBS) è spesso stata raccontata come una conseguenza diretta di un intestino “infiammato” o “iper-permeabile”.
Questa narrazione, per quanto suggestiva, è incompleta.
La letteratura scientifica più recente descrive l’IBS come un disturbo eterogeneo e multifattoriale, in cui infiammazione, permeabilità intestinale, sistema nervoso e microbiota interagiscono in modo variabile da persona a persona. Capire questa complessità è essenziale per evitare spiegazioni riduzioniste — e terapie uguali per tutti.

IBS: un disturbo dell’interazione intestino–cervello
Secondo i criteri diagnostici attuali (Rome IV), l’IBS rientra nei Disturbi dell’Interazione Intestino–Cervello.
Ciò significa che i sintomi non dipendono necessariamente da lesioni visibili dell’intestino, ma da una alterata comunicazione tra intestino, sistema nervoso e sistema immunitario.
Dolore addominale, gonfiore e alterazioni dell’alvo possono quindi manifestarsi anche in presenza di:
mucosa intestinale strutturalmente integra
esami infiammatori nella norma
Ed è proprio qui che nascono molte incomprensioni.

La permeabilità intestinale: importante, ma non universale
Alcuni pazienti con IBS presentano un aumento della permeabilità intestinale (la cosiddetta leaky gut), soprattutto:
nei sottotipi con diarrea predominante (IBS-D)
nell’IBS post-infettiva
In questi casi la barriera intestinale risulta meno efficiente e può facilitare l’attivazione del sistema immunitario.
Tuttavia, non tutti i pazienti IBS mostrano questo fenomeno.
Anzi, in sottotipi come IBS con stitichezza (IBS-C) o IBS mista (IBS-M), la permeabilità intestinale risulta spesso sovrapponibile a quella dei soggetti sani.
Questo dato è cruciale: la permeabilità aumentata non è una caratteristica universale dell’IBS.

Infiammazione di basso grado: presente, ma non sempre “visibile”
Molti studi mostrano che nell’IBS è frequente una infiammazione cronica di basso grado, caratterizzata da:
lieve aumento di citochine pro-infiammatorie
attivazione di mastociti e cellule immunitarie
segnali infiammatori localizzati o sistemici
Ma questa infiammazione:
può essere submucosa o neuro-immune
può non coinvolgere direttamente l’epitelio intestinale
può manifestarsi senza alterare la permeabilità
In altre parole: infiammazione non significa automaticamente “intestino danneggiato”.

Un punto chiave spesso frainteso
La ricerca più aggiornata suggerisce un modello più realistico:
La permeabilità intestinale non è un prerequisito obbligatorio dell’infiammazione, ma può agire come amplificatore del processo infiammatorio quando è presente.
Questo spiega perché:
alcuni pazienti mostrano infiammazione senza leaky gut
altri hanno una barriera alterata senza sintomi importanti
L’esito dipende da molti fattori:
tipo di infiammazione
microbiota
regolazione neuro-endocrina
suscettibilità individuale

IBS senza leaky gut: come si spiegano i sintomi?
Nei pazienti con permeabilità intestinale normale, i sintomi dell’IBS sono sostenuti da altri meccanismi, ben documentati:
Ipersensibilità viscerale
L’intestino “sente di più”: stimoli normali vengono percepiti come dolorosi.
Alterazioni dell’asse intestino–cervello
Stress cronico, ansia e disregolazione neuro-endocrina amplificano i segnali intestinali.
Disbiosi funzionale
Cambiamenti qualitativi del microbiota e dei suoi metaboliti influenzano sistema nervoso e immunità, senza danneggiare la barriera.
Attivazione immunitaria neuro-mucosa
Cellule immunitarie attivate vicino alle fibre nervose rilasciano mediatori che aumentano il dolore, anche con epitelio integro.

Perché questo cambia il modo di curare l’IBS
Se l’IBS non è una singola malattia, non può avere una singola causa né una singola terapia.
Un approccio efficace deve essere:
personalizzato
basato sul profilo del paziente
attento ai diversi meccanismi coinvolti
Ridurre tutto a “infiammazione” o “leaky gut” rischia di:
semplificare eccessivamente
creare aspettative terapeutiche errate
trascurare componenti centrali del disturbo

In sintesi
❌ IBS non significa sempre intestino permeabile
❌ infiammazione non significa sempre danno mucosale
✅ IBS è un disturbo complesso dell’interazione intestino–cervello
Comprendere questa complessità non rende il problema più confuso:
lo rende più reale, più scientifico e più curabile.