Header Image - Gluten Light

luciano

Maturazione naturale della farina

by luciano

La maturazione naturale della farina è un processo che riguarda gli aspetti biochimici, enzimatici e botanici dei fenomeni che avvengono durante la maturazione naturale degli sfarinati, dopo la macinazione e le implicazioni tecnologiche sul processo della panificazione e richiede tempo. Necessità commerciali hanno sempre più orientato molti operatori del settore ad accelerare questo processo utilizzando additivi. L’argomento è di vitale importanza per la qualità dei prodotti finali ed è per questo motivo che pubblichiamo integralmente un articolo (suddiviso in due parti) della Dott.sa Lauri Simona (tecnologo alimentare). L’articolo è di una straordinaria chiarezza ed evidenzia una profonda conoscenza della materia unita ad una notevole capacità espositiva.

L’importanza della maturazione naturale della farina (I parte)
La maturazione naturale della farina rappresenta realmente un elemento facoltativo, per non dire superfluo? O è forse un fattore chiave, frutto di un secolare processo tecnologico naturale, nonché sinonimo di vera qualità? (I Parte). Pubblicato il: 25/08/2014
Premessa
Parlare di farine non è mai una cosa semplice, soprattutto quando vi sono molteplici punti di vista attraverso i quali è possibile affrontare l’argomento: agronomico, botanico e/o genetico del frumento, reologico, enzimatico, tecnologico, concernente le analisi di processo, legislativo, commerciale, nutrizionale o semplicemente divulgativo. A questa problematica si aggiunga il lessico della trattazione, che molto spesso è basato su vocaboli o troppo tecnici – a quasi esclusivo appannaggio universitario – o eccessivamente semplificati, tali da diffondere banalità o informazioni elementari e pertanto reperibili ovunque.

L’argomento di quest’approfondimento sulla farina di frumento riguarda gli aspetti biochimici, enzimatici e botanici dei fenomeni che avvengono durante la maturazione naturale degli sfarinati, dopo la macinazione e le implicazioni tecnologiche sul processo della panificazione. Si cercherà pertanto di utilizzare un linguaggio il più semplificato possibile, pur mantenendo solide le basi scientifiche e la terminologia tecnica, evitando – quando possibile – dettagliati approfondimenti e rimandando ad opportuni testi, pubblicazioni universitarie, o articoli specifici.

fig.1 – Sezione della Cariosside di Frumento
La maturazione naturale
Per il lavoro che svolgo, mi confronto molto spesso con rappresentanti, tecnici di laboratorio, tecnologi alimentari, operatori commerciali di moltissimi molini ed alcuni di essi (per fortuna pochi!) si stupiscono quando parlo di maturazione naturale della farina. Ciò induce in me non poche perplessità (in tutti i sensi), ricordandomi immediatamente che purtroppo viviamo nell’era dell’artefatto (aromi di sintesi, additivi, ecc.) e questo contribuisce enormemente a rovinare l’immagine delle aziende e del Settore Molitorio più in generale.
Per qualcuno, la maturazione naturale della farina rappresenta un costo nonché un “optional” del quale si può tranquillamente fare a meno, poiché sopperito dall’aggiunta (volontaria) di additivi e/o enzimi, alcuni dei quali fatti passare per coadiuvanti tecnologici e pertanto non dichiarati in etichetta.
Per coloro che invece lavorano con passione e serietà da generazioni, che curano il dettaglio, portando rispetto per il prossimo – soprattutto per il grano – e che amano il proprio mestiere, è scontato che per fare qualità con le farine occorra partire: in primis dalla certezza della provenienza e dalle caratteristiche intrinseche ed estrinseche (agronomica, chimica, fisica, botanica, entomologica, reologica, enzimatica, fertilizzazione del terreno, patologie delle piante, ecc.) dei grani, macinati in purezza o in opportuna miscela tra loro e in secundis proprio dalla maturazione naturale che viene perpetrata da secoli.
Una vecchia canzone recitava così: << ..per fare l’albero ci vuole il seme.. >>; anche per fare la farina occorre il frumento e cioè il seme (la cariosside)! E’ chiaro che per lavorare la farina sia fondamentale conoscerla nei dettagli, per comprenderne i comportamenti reologici, dettati da interazioni chimico-fisiche e biochimiche quali: il Punto Isoelettrico delle proteine, la conformazione nativa, la temperatura di transizione vetrosa, la gelatinizzazione, la denaturazione, le catene polimeriche, la dimerizzazione, ecc. Aspetti, questi ultimi, estremamente complessi e di cui alcuni ancora in fase di studio.
La cariosside di frumento
La struttura anatomica della cariosside (frutto il cui corpo fruttifero è tutt’uno con il seme) di tutti i cereali è abbastanza simile, portando all’identificazione di tre regioni principali rappresentate da: tegumenti esterni, endosperma amilaceo, o mandorla farinosa ed embrione, o germe (fig. 1). Ognuna di queste regioni possiede una composizione chimica differente ed altamente specifica per meglio rispondere alla propria funzione biologica naturale nel seme che, in condizioni opportune, germinerà dando origine a una nuova pianta. La differente composizione percentuale dei nutrienti (amido ed altri carboidrati, proteine, lipidi, cellulosa, emicellulosa, pentosani, sali minerali e vitamine) presenti nelle parti della cariosside, riveste un ruolo fondamentale, non solo da un punto di vista botanico, ma anche tecnologico, durante tutto il processo della macinazione e le lavorazioni successive.
Le conseguenze tecnologiche e fisiche della macinazione
Gli obiettivi della macinazione sono pertanto quelli di: trasformare la cariosside dei cereali (pseudocereali, ecc.) in sfarinati, permettendo di separare l’endosperma dalle parti tegumentali e dal germe, oltre a ridurre le dimensioni della mandorla farinosa (figure 2, 3 e 4).
L’endosperma centrale include la parte amilifera e lo strato aleuronico, che nel corso della macinazione è rimosso dalla crusca. L’endosperma amilifero è il responsabile della produzione di farina bianca nel processo di macinazione del frumento tenero e della semola raffinata nella macinazione del grano duro.
Pertanto, la macinazione a cilindri determina, a grandi linee, la rottura della cariosside, il distacco dell’endosperma amilifero dalla crusca (proveniente dal pericarpo), dallo strato aleuronico e dal germe, nonché la riduzione della granulometria dell’endosperma a dimensioni medie di circa 100μm per la farina di frumento tenero. La conseguenza tecnologica e fisica del processo di macinazione consiste pertanto in una serie di differenti passaggi atti a garantire la conversione dell’endosperma in farina, la separazione dei tegumenti e dell’embrione, la rottura di una parte dei granuli d’amido e l’ottenimento di uno sfarinato con composizione chimica diversa da quella della cariosside di partenza.

(fig.3 – Taglia Covoni)
(fig.2 – Mulino ad Acqua)
(fig.4 – Macina Manuale a Pietra Naturale)

Chiaramente, maggiore è il grado di raffinazione degli sfarinati, minore sarà il valore nutrizionale delle farine e più elevate saranno le proporzioni di cariosside eliminate con i sottoprodotti; al contrario, queste ultime diminuiranno con l’innalzamento del tasso di abburattamento.

Partendo pertanto dal concetto basilare che la cariosside è un seme (organismo vivente vegetale) e in condizioni opportune, intese come la presenza di ossigeno, lo stato igrometrico dell’aria, il livello d’idratazione interna, la temperatura interna ed esterna, ecc., può avviare il processo della germinazione in senso stretto.
La germinazione e gli effetti sulle caratteristiche chimico-fisiche
Quando germoglia, il grano respira con sempre maggiore intensità, emettendo una forte quantità di calore e di umidità. La germinazione del seme inizia con l’assorbimento di acqua che fa gonfiare l’embrione fino a lacerarne il rivestimento; spunta così la radichetta, che si dirige verso il basso ed è seguita immediatamente da altre due radichette e dal germoglio, il quale invece si orienta verso l’alto. Man mano che si sviluppa in altezza, emette le foglie.

L’utilizzazione, nel corso della germinazione delle riserve accumulate sia nell’endosperma amilaceo sia nei cotiledoni, rappresenta la fase più importante del periodo di crescita della plantula, ma soprattutto di nutrizione eterotrofa dell’embrione che terminerà quando la pianta in autonomia, sarà in grado di compiere sia la fotosintesi clorofilliana sia la respirazione.
I macronutrienti presenti all’interno del seme hanno quindi il compito di sostenere la crescita dell’embrione; la loro funzione sarà svolta solo se saranno idrolizzati nei componenti più semplici da un pool enzimatico naturalmente presente nella cariosside, localizzato per lo più nell’embrione del seme.
Gli enzimi e la loro funzione nella farina
Gli enzimi sono proteine o di tipo idrolitico (amilasi, proteasi, lipasi), o ossidativo (lipossigenasi, perossidasi). Sono strutture che svolgono funzione di “catalizzatori biologici”, cioè aumentano la velocità delle reazioni biochimiche e si ritrovano poi inalterati alla fine delle reazioni stesse. Si può quindi definire un enzima come un agente catalitico organico, prodotto da cellule viventi, in grado di idrolizzare macromolecole complesse come amido, proteine, lipidi, cellulosa, pentosani, ecc., nelle singole unità costituenti, al fine di sostenere la crescita e lo sviluppo dell’embrione. Tale azione (la macinazione della cariosside avviene in assenza di germinazione) proseguirà comunque nello sfarinato e rappresenterà l’aspetto principale della fase della maturazione naturale della farina tal quale.

Qualsiasi sfarinato, immediatamente dopo la sua produzione, con il passare del tempo cambia le proprie caratteristiche reologiche e la qualità può migliorare e/o peggiorare in base al tempo e alle condizioni di stoccaggio: questa fase si chiama “maturazione della farina”. Nella seconda parte di questo articolo analizzeremo più nel dettaglio il processo della maturazione naturale della farina, evidenziando come purtroppo per alcune aziende quest’ultimo rappresenti solamente un optional antieconomico e pertanto da sostituire con l’aggiunta ad hoc di additivi volontari e/o coadiuvanti tecnologici.”
Simona Lauri
Panificatore artigiano, consulente tecnico, perito, docente, maestro e formatore di Arte Bianca (pane tradizionale italiano, pizza classica, pizza in pala, prodotti innovativi, prodotti da forno, grandi lievitati, prodotti tradizionali, soggetti artistici, etc.) per Professionisti, Associazioni, Enti Nazionali ed Internazionali, Privati, Aziende, Fiere e Manifestazioni Italiane ed Estere. Giudice di gara in diverse Competizioni Nazionali e Mondiali. Iscritta all’Ordine dei Tecnologi Alimentari Regione Lombardia e Liguria OTA.
All’attivo numerose pubblicazioni scientifiche su portali, testate giornalistiche del settore. Già Docente universitario di microbiologia, relatore in convegni tecnici del settore, formatore ed esperto con pluriennale esperienza pratica.

La digestione del glutine (perché è difficile da digerire)

by luciano

Gliadina e Glutenina

Gliadina e Glutenina sono le proteine del grano responsabili della formazione del glutine e sono composte da lunghe catene di aminoacidi chiamate peptidi (1).

Digestione della gliadina e glutenina
L’intestino tenue è in grado di assimilare, attraverso l’epitelio intestinale, solo i singoli aminoacidi o piccole frazioni di peptidi con pochissimi aminoacidi (2). Sono gli enzimi digestivi gastro-intestinali che riducono “spezzettano” i peptidi riducendoli i singoli aminoacidi o in piccoli frammenti (3; 4), i perptidi piu grandi, in individui sani, verranno eliminati con le feci. I frammenti più grandi raggiungono l’intestino e possono provocare un aumento delle infiammazioni intestinali o della permeabilità intestinale esistente. Alcune di queste frazioni sono anche responsabili dell’attivazione avversa del sistema immunitario provocando la celiachia in taluni soggetti (5).


Alcuni peptidi sono altamente resistenti, difficili da “spezzettare” (6) rendendo i prodotti realizzati con i grani che li contengono meno digeribili. I grani, però, non sono tutti uguali. Studi specifici sono stati fatti per identificare, in campioni di grani, quali “frazioni” permangono dopo la digestione (7; 8). La quantificazione quali-quantitativa permette di poter selezionale “grani” più digeribili.
Note:
1 – Una catena di più amminoacidi legati tra loro è indicata con il nome di peptide o polipeptide o di oligopeptide. Gli aminoacidi (o amminoacidi) sono l’unità strutturale primaria delle proteine. Gli aminoacidi sono in pratica i “mattoncini”che, uniti tra loro formano una lunga sequenza che dà origine ad una proteina.
2 –E’ comunemente accettato che il massimo numero assimilabile è pari a 8 aminoacidi.
3- La digestione della gliadina e della glutenina è legata alla lunghezza dei polipeptidi che le compongono, alla forza dei legami esistenti tra gli aminoacidi e tra i polipeptidi, alla sequenza/natura dei singoli aminoacidi.
4 – La digestione delle proteine comincia nello stomaco, dove l’acido cloridrico crea l’ambiente adatto per l’enzima pepsina che esegue i primi “tagli”. Il grosso del lavoro comincia però più avanti, nell’intestino. Il pancreas produce molti enzimi, il più importante dei quali è la tripsina, che riduce le catene proteiche in frammenti composti da un numero ridotto di amminoacidi. Poi, altri enzimi, sulla superficie delle cellule intestinali e all’interno delle cellule, operano ulteriore riduzione in frammenti piccolissimi o/e singoli aminoacidi che vengono assorbiti a partire dal duodeno per tutto il digiuno e l’ileo attraverso i villi intestinali per essere, poi assimilati per la sintesi di nuove proteine e non solo. Dopo essere stati assorbiti raggiungeranno il fegato dove possono:
4a – essere utilizzati come tali per svolgere funzioni particolari (intervengono nelle risposta immunitaria, nella sintesi di ormoni e vitamine, nella trasmissione degli impulsi nervosi, nella produzione di energia e come catalizzatori in moltissimi processi metabolici)
4b – partecipare alla sintesi proteica, un processo inverso a quello digestivo che ha lo scopo di fornire all’organismo i materiali per la crescita, il mantenimento e la ricostruzione delle strutture cellulari
4c – se presenti in eccesso vengono utilizzati a scopi energetici (gluconeogenesi) o convertiti in grasso di deposito.
5 – In alcune persone alcuni specifici frammenti provenienti principalmente dalle α-gliadine e secondariamente dalle HMW-GS innescano la celiachia (Gilissen et al., 2014). Questi frammenti, sono peptidi costituiti da una sequenza di nove amminoacidi che provengono dalle proteine ricche in prolina e glutammina (prolamine), che sono resistenti alla digestione (Bethune and Khosla, 2008). Queste frazioni sono, generalmente, anche le più resistenti alla digestione gastro-intestinale. Pertanto, è stato ipotizzato che le gliadine pur difficilmente idrolizzabili dagli enzimi gastro-enterici, rimangano immunologicamente inattive nella maggior parte delle persone [A].
6 – Altro fattore che influenza la digeribilità di queste proteine è costituita dalla tipologia degli aminoacidi costituenti: l’alto contenuto di prolina e glutamina rende queste proteine resistenti alla completa digestione nell’intestino tenue [B]. Un peptide noto per l’alta presenza di prolina e glutammina è quello denominato 33mer presente nei grani teneri, farro spelta e grani duri è particolarmente resistente alla digestione gastro-intestinale. Questa frazione, che tra l’altro, è quella che più attiva la risposta avversa del sistema immunitario, è presente in varia misura nei grani: da 90,9 a 602,6 μg / g di farina. Non è stata, invece, rilevata la sua presenza nel grano monococco e nel grano duro [C].
7 – Summary of the GD-resistant peptides identified at the end of the duodenal phase and counting of the peptides encrypting full length epitopes relevant for celiac disease (CD) and wheat allergy: see table 3 in A Comprehensive Peptidomic Approach to Characterize the Protein Profile of Selected Durum Wheat Genotypes: Implication for Coeliac Disease and Wheat Allergy. Rosa Pilolli, Gianfranco Mamone et al. 2019.

8 – Ancestral Wheat Types Release Fewer Celiac Disease Related T Cell Epitopes than Common Wheat upon Ex Vivo Human Gastrointestinal Digestion. Tora Asledottir, Gianluca Picariello, Gianfranco Mamone et al. 2020.

A – “Alimentary protein digestion followed by amino acid and peptide absorption in the small intestinal epithelium is considered an efficient process. Nevertheless, unabsorbed dietary proteins enter the human large intestine as a complex mixture of protein and peptides.53,63 The incomplete assimilation of some dietary proteins in the small intestine has been previously demonstrated, even with proteins that are known to be easily digested (e.g., egg protein).64,65 The high proline content of wheat gluten and related proteins renders these proteins resistant to complete digestion in the small intestine. As a result, many high molecular weight gluten oligopeptides arrive in the lower gastrointestinal tract.66 While gluten peptides pass through the large intestine, proteolytic bacteria could participate in the hydrolysis of these peptides. 81Gluten Metabolism in Humans. Alberto Caminero, … Javier Casqueiro, in Wheat and Rice in Disease Prevention and Health, 2014”
B – “Prolamins (gliadins and glutenins) have a high content of proline (15%) and glutamine (35%) and, depending on the cereal, they have been termed secalin for rye, hordein for barley, avenin for oats, and gliadin for wheat. The high concentration of these amino acids, especially proline, limits proteolysis by gastrointestinal enzymes, preventing the complete degradation by human gastric and pancreatic enzymes. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and
Product Quality . Nina G. Heredia-Sandoval , Maribel Y. Valencia-Tapia , Ana M. Calderón de la Barca and Alma R. Islas-Rubio . Received: 1 May 2016; Accepted: 27 August 2016; Published: 30 August 2016.”
C – Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours 2017. Kathrin Schalk, Christina Lang, Herbert Wieser, Peter Koehler & Katharina Anne Scherf .

Grano Monococco Varietà Norberto (I parte)

by luciano

Grano monococco varietà Norberto (ID331)

Presentazione sintetica varietà Norberto. Le banche genetiche dei grani custodiscono innumerevoli semi di grano (accessioni- varietà) che sono oggetto di studi, ricerche cosi come di richieste per coltivazione. L’accessione può essere indicata con un numero, un codice, il nome dell’agricoltore, di colui che l’ha individuata, del raccoglitore, ecc., e della località di raccolta.
Le varietà sono, a differenza delle accessioni, iscritte al Registro delle varietà di specie agrarie con un proprio nome identificativo in moda da poter essere commercializzate. Ed è quello che è avvenuto con l’accessione ID331 che il CREA di Roma ha “caratterizzato” (cioè descritto e individuato in modo univoco) e  iscritto con il nome di Norberto. Successivamente il CREA, attraverso una gara pubblica (2017) ha assegnato, per 10 anni, alla società Agroservice S.P.A. la coltivazione del seme con l’obbligo di mantenerlo in purezza.

Caratteristiche peculiari grano monococco.
1. caratteristica struttura glutine
2. caratteristiche salutistiche
3. certezza di cosa acquistiamo
4. purezza e salubrità di cosa acquistiamo

Caratteristica della struttura del glutine

Perchè il glutine del monococco è meno forte di quello del grano duro e del grano tenero
La struttura del glutine è composta da glutenine che formano una struttura chiamata macropolimero -lo scheletro del glutine [1] – che ingloba le gliadine. Le glutenine sono collegate tra loro da legami disolfuro che sono molto resistenti alla scissione. Il monococco ha più gliadine che glutenine rispetto agli altri grani, ha, quindi, uno “scheletro” meno sviluppato che rende il suo glutine meno “forte” [2]. La maggiore presenza di gliadine rende, inoltre, gli impasti viscosi e soffici.
Note:
1 – It has been proposed that glutenin subunits provide a structural backbone to the glutenin macropolymer through the formation of disulfide bonds that are highly resistant to cleavage [1]. The inherent ability of glutenin subunits to form disulfide bonds is thought to be determined by the primary and secondary structure of the proteins, which determines whether cysteine residues are present and available to form disulfide bonds, the capacity of a subunit to fold in the manner that would be required to form the bond, and the elasticity of the subunit once in the polymer to provide visco-elastic properties to a dough. The glutenin macropolymer of wheat flour doughs: structure–function perspectives. Megan P. Lindsay et al. Trends in Food Science & Technology Volume 10, Issue 8, August 1999, Pages 247-253
2 – Il contenuto e la composizione delle proteine del glutine è stato oggetto di pochi studi; quelli esistenti riguardanti anche il rapporto GLIADINE/GLUTENINE riportato i seguenti dati: farine bianche di frumento tenero valori compresi tra 1,7–3,1 (Wieser e Kieffer, 2001) e 1,4–2,1 (Thanhaeuser et al., 2014), mentre quelle di farro (2,2–9,0) (Koenig et al., 2015 ), frumento duro (3,1–5,0) (Wieser, 2000; Wieser et al., 2003), farro (3,5–7,6) (Wieser e Koehler, 2009) e monococco (4,0–14,0) (Wieser et al., 2009), sempre monococco (4.2-12.0) Sabrina Geisslitz et al. 2018

Caratteristiche salutistiche

1 – Digeribilità del glutine
Le varietà di grano monococco hanno un glutine, pur nella variabilità dovuta alle condizioni pedo-climatiche delle zone di coltura, sensibilmente meno “forte” e in quantità inferiore (Comparative Analysis of in vitro Digestibility and Immunogenicity of Gliadin Proteins From Durum and Einkorn Wheat. Frontiers in Nutrition maggio 2020)” rispetto ai grani duri e tenero. Queste caratteristiche hanno un forte impatto sulla digeribilità del glutine. Il grano monococco varietà Norberto ha un indice di glutine 15-30 e un indice di forza di circa 80. Uno studio condotto dal CNR di Avellino a cura di G. Mamone, dimostra l’elevata digeribilità del monococco rispetto al frumento: “Con il nostro studio abbiamo scoperto che varietà antiche di questo cereale contengono un glutine più fragile e dunque più digeribile e meno tossico rispetto al grano tenero (Triticum aestivum)”. Approfondimento: la digestione del glutine.

La digeribilità del glutine è di estrema importanza per mantenere in buono stato l’apparato gastro-intestinale e, di conseguenza la salute. Il sistema gastro-intestinale è soggetto a molteplici patologie (oltre che malattie vere e proprie) che ne compromettono il buon funzionamento. Tra queste “patologie” l’infiammazione e la permeabilità intestinale rivestono particolare importanza. Patologie piuttosto frequenti aggravate dallo stress sempre più presente nella nostra vita (a livelli molto alti oggi anche per effetto del covid) e dal regime alimentare non sempre corretto.

Il grano monococco possiede delle caratteristiche peculiari che né fanno un ottimo alleato per non aggravare sia l’infiammazione che la permeabilità intestinale anzi, la varietà ID331 (ora Norberto), contiene una frazione del glutine (peptide) che esercita un effetto “protettivo” verso la membrana intestinale come successivamente precisato. Inoltre i prodotti con grano monococco possono migliorare non solo i parametri proinfiammatori/antiossidanti ma anche lo stato glicemico e lipidico (Brandolini 2021).

2 – Effetto sulla permeabilità intestinale e verso la membrana intestinale
Una ricerca del 2016 ha evidenziato che il glutine (specificatamente le gliadine) del grano monococco id331 (ora Norberto) non stimolano la permeabilità intestinale “ ID331 gliadin did not enhance permeability”. Inoltre possiede una frazione del glutine che esercita un’azione protettiva della mucosa intestinale. (Protective effects of ID331 Triticum monococcum gliadin on in vitro models of the intestinal epithelium. G. Jacomino et al 2016).

3 – Effetto anti infiammatorio verso la membrana intestinale
Lo studio “ Integrated Evaluation of the Potential Health Benefits of Einkorn-Based Breads A. Gobetti et al. 2017” ha evidenziato che il il grano monococco (pane) esercita un’azione anti-infiammatoria sulla membrana intestinale :“einkorn bread evidenced an anti-inflammatory effect, although masked by the effect of digestive fluid”. In buona sostanza un potenziale aiuto per mantenere la salute: “potential health benefit of einkorn-based bakery products compared to wheat-based ones.”

Cutaneous Manifestations of Non-Celiac Gluten Sensitivity

by luciano

 

Cutaneous Manifestations of Non-Celiac Gluten Sensitivity: Clinical Histological and Immunopathological Features
Veronica Bonciolini, Beatrice Bianchi, Elena Del Bianco, Alice Verdelli, and Marzia Caproni
Abstract
Background: The dermatological manifestations associated with intestinal diseases are becoming more frequent, especially now when new clinical entities, such as Non-Celiac Gluten Sensitivity (NCGS), are identified. The existence of this new entity is still debated. However, many patients with diagnosed NCGS that present intestinal manifestations have skin lesions that need appropriate characterization. Methods: We involved 17 patients affected by NCGS with non-specific cutaneous manifestations who got much better after a gluten free diet. For a histopathological and immunopathological evaluation, two skin samples from each patient and their clinical data were collected. Results: The median age of the 17 enrolled patients affected by NCGS was 36 years and 76% of them were females. On the extensor surfaces of upper and lower limbs in particular, they all presented very itchy dermatological manifestations morphologically similar to eczema, psoriasis or dermatitis herpetiformis. This similarity was also confirmed histologically, but the immunopathological analysis showed the prevalence of deposits of C3 along the dermo-epidermal junction with a microgranular/granular pattern (82%). Conclusions: The exact characterization of new clinical entities such as Cutaneous Gluten Sensitivity and NCGS is an important objective both for diagnostic and therapeutic purposes, since these are patients who actually benefit from a GFD (Gluten Free Diet) and who do not adopt it only for fashion.
….omissis: 5.

Conclusions
At the moment, the results of our study do not allow the exact characterization of a new skin disease related to NCGS. The skin lesions observed were similar both to eczema and psoriasis and did not show a specific histological pattern. Furthermore, no serological marker was useful to identify these patients. The only data common to most of these patients affected by NCGS associated to non-specific skin manifestations are:
1. the itching;
2. the presence of C3 at the dermoepidermal junction;
3. a rapid resolution of lesions when adopting the gluten free diet.”

From: Nutrients. 2015 Sep; 7(9): 7798–7805. Published online 2015 Sep 15. doi:10.3390/nu7095368

 

Cibo non digerito e il microbiota intestinale

by luciano

Il cibo non digerito e il microbiota intestinale possono collaborare nella patogenesi delle malattie neuroinfiammatorie: una questione di barriere e una proposta sull’origine della specificità d’organo
Premessa
La digeribilità dei prodotti realizzati con farina di grano è andata mano mano diminuendo in relazione alla sempre più diffusa necessità di grani che diano un impasto adatto ai processi industriali. La digeribilità del cibo e, dunque in particolare dei grani è rilevante in quanto in molte persone concorre in modo spesso significativo ad aumentare l’infiammazione intestinale. Lo studio proposto affronta questa importante tematica.

Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases: A Matter of Barriers and a Proposal on the Origin of Organ Specificity . Paolo Riccio, Rocco Rossano Nutrients. 2019 Nov 9;11(11):2714. doi: 10.3390/nu11112714.
Abstract: As food is an active subject and may have anti-inflammatory or pro-inflammatory effects, dietary habits may modulate the low-grade neuroinflammation associated with chronic neurodegenerative diseases. Food is living matter different from us, but made of our own nature. Therefore, it is at the same time foreign to us (non-self), if not yet digested, and like us (self), after its complete digestion. To avoid the efflux of undigested food from the lumen, the intestinal barrier must remain intact. What and how much we eat shape the composition of gut microbiota. Gut dysbiosis, as a consequence of Western diets, leads to intestinal inflammation and a leaky intestinal barrier. The efflux of undigested food, microbes, endotoxins, as well as immune-competent cells and molecules, causes chronic systemic inflammation. Opening of the blood-brain barrier may trigger microglia and astrocytes and set up neuroinflammation. We suggest that what determines the organ specificity of the autoimmune-inflammatory process may depend on food antigens resembling proteins of the organ being attacked. This applies to the brain and neuroinflammatory diseases, as to other organs and other diseases, including cancer. Understanding the cooperation between microbiota and undigested food in inflammatory diseases may clarify organ specificity, allow the setting up of adequate experimental models of disease and develop targeted dietary interventios.
Keywords: Alzheimer’s disease; Parkinson’s disease; amyotrophic lateral sclerosis; autism spectrum disorders; blood-brain barrier; diet; gut microbiota; inflammation; intestinal barrier; multiple sclerosis (traduzione abstract in fondo articolo)

In evidenza questo passaggio:
omissis. 7. What Food Is and Why It must be Digested Food is what we eat: everything that has to do with the matter of life, not inorganic matter.  We do do not eat sand, mud, paper or plastic, but everything we recognize to be safe and in its essence   similar to us, i.e., that which is made like us and that we know how to “treat”, metabolize and  and transform in order to obtain energy or to replace our altered constituents over time. Therefore, our food is made up food is made up exclusively of living matter (which has often been inactivated).   However, when we consume it, food is completely different from us (non-self) and we cannot use use any of it as it is.  Altogether, dietary macromolecules are so different from us that we must provide for for their elimination as soon as they occur outside the gastrointestinal system. Although the biological cells and the macromolecular structures present in our menus  (proteins, membranes, polysaccharides) are different from ours, their basic constituents [the bioelements (C,N,O,H), and simple molecules such as fatty acids, monosaccharides, aminoacids] are the same as  those we use (Figure 5). Ultimately, living matter is at the same time both foreign to us (non-self) and those we use (Figure 5) and congenial to us (self). As they are different in origin from ours, tissues, cells and proteins from food cannot be used as they are. They must be degraded to simple molecules by the digestive system in the gastro-intestinal tract (the reaction vessel) and then absorbed. This is why food must be digested before being absorbed: it is non-self before digestion and becomes self when digestion is complete. Only the completely digested molecules are congenial to us, are recognized as self and can enter our metabolism after their absorption.  In conclusion the task of In digestion  is to make  food like us, while absorption is required to make absorption simple molecules  available to our metabolism. In just over a day (35–40h) our food becomes part of us (Figuren 6).

Figure 1. Chronic neurodegenerative diseases have a chronic inflammatory basis in common.

Figure 2 Dietary habits affect both our metabolism and the composition of our gut microbiota.

Figure 3 Pro-inflammatory dietary factors.

Figure 4 Anti-inflammatory dietary factors. The intrinsic factors are those playing a role in our metabolism. They include: omega-3 poly-unsaturated long-chain fatty acids (n-3 PUFAs), present in fish oil; vitamins A and D, B12, PP, E and C; oligoelements such as magnesium, zinc and selenium; thiolic acids such as alfa-lipoic acid (ALA), N-acetyl cysteine and glutathione. The extrinsic factors are the polyphenols, the phytochemicals present in vegetables: they have anti-inflammatory properties and upregulate the catabolism, but are recognized by our metabolism as “foreign” molecules. However, as shown below, they represent a food source for the gut microbiota. Prebiotics and probiotics are cited here for their anti-inflammatory action, but their effects are exerted mainly through the gut microbiota.

Figure 5 The basic constituents of living matter. The world we know is made up of 92 chemical elements, 81 of which are stable. Living matter uses only about 26–30 of these elements, but 99% of it consists of only four “bioelements”: carbon (C); nitrogen (N); oxygen (O); and hydrogen (H). The bioelements are able to form 4-3-2-1 bonds, respectively, and have a high tendency to get together and form complex molecules such as proteins and nucleic acids, which are different for every species. This means that at the basic level all living organisms are equal to each other, while in their complex forms they are different.

Figure 6 Schematic representation of the metabolic processes, from digestion of the simplest molecules, common to all living organisms and to their fruition.

Figure 7 Effects of dietary factors and stressors on the integrity of the intestinal barrier.

Figure 8 From Westernized dietary habits to neuroinflammation and neurodegenerative diseases: a schematic representation.

Abstract: traduzione

Poiché il cibo è un soggetto attivo e può avere effetti antinfiammatori o pro-infiammatori, le abitudini alimentari possono modulare la neuroinfiammazione di basso grado associata a malattie neurodegenerative croniche. Il cibo è materia vivente diversa da noi, ma fatta della nostra stessa natura. Pertanto, è al tempo stesso estraneo a noi (non self=estraneo) se non ancora digerito e come noi (self=se stesso) dopo la sua completa digestione. Per evitare l’efflusso di cibo non digerito dal lume (stomaco/intestino), la barriera intestinale deve rimanere intatta. Cosa e quanto mangiamo modella la composizione del microbiota intestinale. La disbiosi intestinale, come conseguenza delle diete occidentali, porta a un’infiammazione intestinale e una barriera intestinale cheperde la sua integrità. L’efflusso di cibo non digerito, microbi, endotossine, nonché cellule e molecole immunocompetenti provoca un’infiammazione sistemica cronica. L’apertura della barriera ematoencefalica può innescare microglia e astrociti e impostare neuroinfiammazione. Suggeriamo che ciò che determina la specificità d’organo del processo autoimmune-infiammatorio può dipendere da antigeni alimentari simili alle proteine dell’organo che viene attaccato. Questo vale per il cervello e le malattie neuroinfiammatorie, come per altri organi e altre malattie, compreso il cancro. Comprendere la cooperazione tra microbiota e cibo non digerito nelle malattie infiammatorie può chiarire la specificità dell’organo, consentire la creazione di adeguati modelli sperimentali di malattia e sviluppare interventi dietetici mirati.

Autorizzazione: Deed Creative Commons Attribuzione 4.0 Internazionale (CC BY 4.0)