DomenicoRonga et al. https://doi.org/10.1016/j.eja.2020.126091 Science Direct
Punti salienti
Principali effetti dell’ambiente sull’accumulo di gliadine e peptidi che attivano la celiachia.
• Il fattore genetico contribuisce all’accumulo di peptidi tossici.
• Gliadine e peptidi coinvolti nella celiachia dipendono anche da GDD e precipitazioni.
• La bassa evapotraspirazione diminuisce il livello di gliadine e peptidi coinvolti nella celiachia.
• La selezione per TP (peptidi tossici), IP (peptidi immunogenici), α-GliA2-6, γ-Gli-5 potrebbe essere disancorata da GPC e GV
Abstract
“The impact of environment, genetic selection and their interactions on grain yield of durum wheat genotypes has been extensively studied; however, limited information is available for their influence on gluten quality associated with effects on the amount and composition of glutenins, gliadins and celiac disease (CD)-triggering peptides. In this study, a set of six commonly cultivated durum wheat genotypes were assessed in a multi-environment trial of eight site-year combinations in different Italian regions during two consecutive harvest years (2016 and 2017). While high-molecular-weight glutenin subunits (HMW-GS) were more stable between years, differences in total gluten proteins were mainly due to low-molecular-weight glutenin subunits (LMW-GS) and gliadins accumulation. After mass separation and quantification, two gliadin proteins – γ-Gli-5 and α-GliA2-6 (41.1 and 33.8 kDa, respectively) – were further studied together with toxic (TP) and immunogenic (IP) celiac disease-triggering peptides obtained via simulated gastrointestinal digestion. While TP accumulation was strongly influenced by the genotypes, IP showed marked variation in the different sites with significant genotype-by-year and genotype-by-site interaction. Specific agrometeorological variables (i.e. growing degree days and aridity index) in different growing phases showed a strong negative correlation with α-GliA2-6 and CD-associated peptides. Statistical analysis revealed that the level of gliadins and TP/IP peptides were uncorrelated with grain protein content and yield (resa). The selection of plant materials with good technological properties but with a low content of CD-triggering peptides should combine with ad hoc environment (e.g. site) selection and management practices reducing crop evapotranspiration in the vegetative phase.”
Abbreviazioni
AI aridity index
DtH days to heading
GY grain yield
ET0 total reference evapotranspiration
GDD growing degree days
GPC grain protein content
HMW-GS high-molecular-weight glutenin subunits
IP immunogenic peptides
LMW-GS low-molecular-weight glutenin subunits
RCBD randomized complete block design
SN spikes per unit area
TGW thousand kernel weight
TP toxic peptides
TW test
Keywords
Durum wheat, Gluten protein, Gliadin fraction, immunogenic peptides, Environment effect